Musculoskeletal models are powerful tools that allow biomechanical investigations and predictions of muscle forces not accessible with experiments. A core challenge modelers must confront is validation. Measurements of muscle activity and joint loading are used for qualitative and indirect validation of muscle force predictions. Subject-specific models have reached high levels of complexity and can predict contact loads with surprising accuracy. However, every deterministic musculoskeletal model contains an intrinsic uncertainty due to the high number of parameters not identifiable in vivo. The objective of this work is to test the impact of intrinsic uncertainty in a scaled-generic model on estimates of muscle and joint loads. Uncertainties in marker placement, limb coronal alignment, body segment parameters, Hill-type muscle parameters, and muscle geometry were modeled with a global probabilistic approach (multiple uncertainties included in a single analysis). 5–95% confidence bounds and input/output sensitivities of predicted knee compressive loads and varus/valgus contact moments were estimated for a gait activity of three subjects with telemetric knee implants from the “Grand Challenge Competition.” Compressive load predicted for the three subjects showed confidence bounds of 333 ± 248 N, 408 ± 333 N, and 379 ± 244 N when all the sources of uncertainty were included. The measured loads lay inside the predicted 5–95% confidence bounds for 77%, 83%, and 76% of the stance phase. Muscle maximum isometric force, muscle geometry, and marker placement uncertainty most impacted the joint load results. This study demonstrated that identification of these parameters is crucial when subject-specific models are developed.

References

1.
Reinbolt
,
J. A.
,
Fox
,
M. D.
,
Schwartz
,
M. H.
, and
Delp
,
S. L.
,
2009
, “
Predicting Outcomes of Rectus Femoris Transfer Surgery
,”
Gait Posture
,
30
(
1
), pp.
100
105
.
2.
Delp
,
S. L.
,
Statler
,
K.
, and
Carroll
,
N. C.
,
1995
, “
Preserving Plantar Flexion Strength After Surgical Treatment for Contracture of the Triceps Surae: A Computer Simulation Study
,”
J. Orthop. Res.
,
13
(
1
), pp.
96
104
.
3.
Saul
,
K. R.
,
Murray
,
W. M.
,
Hentz
,
V. R.
, and
Delp
,
S. L.
,
2003
, “
Biomechanics of the Steindler Flexorplasty Surgery: A Computer Simulation Study
,”
J. Hand Surg. Am.
,
28
(
6
), pp.
979
986
.
4.
van Arkel
,
R. J.
,
Modenese
,
L.
,
Phillips
,
A. T.
, and
Jeffers
,
J. R.
,
2013
, “
Hip Abduction Can Prevent Posterior Edge Loading of Hip Replacements
,”
J. Orthop. Res.
,
31
(
8
), pp.
1172
1179
.
5.
Lund
,
M. E.
,
de Zee
,
M.
,
Andersen
,
M. S.
, and
Rasmussen
,
J.
,
2012
, “
On Validation of Multibody Musculoskeletal Models
,”
Proc. Inst. Mech. Eng., Part H
,
226
(
2
), pp.
82
94
.
6.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
2001
, “
Dynamic Optimization of Human Walking
,”
ASME J. Biomech. Eng.
,
123
(
5
), pp.
381
390
.
7.
Sasaki
,
K.
, and
Neptune
,
R. R.
,
2006
, “
Differences in Muscle Function During Walking and Running at the Same Speed
,”
J. Biomech.
,
39
(
11
), pp.
2005
2013
.
8.
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Heller
,
M.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Strauss
,
J.
, and
Duda
,
G. N.
,
2001
, “
Hip Contact Forces and Gait Patterns From Routine Activities
,”
J. Biomech.
,
34
(
7
), pp.
859
871
.
9.
Stansfield
,
B. W.
,
Nicol
,
A. C.
,
Paul
,
J. P.
,
Kelly
,
I. G.
,
Graichen
,
F.
, and
Bergmann
,
G.
,
2003
, “
Direct Comparison of Calculated Hip Joint Contact Forces With Those Measured Using Instrumented Implants. An Evaluation of a Three-Dimensional Mathematical Model of the Lower Limb
,”
J. Biomech.
,
36
(
7
), pp.
929
936
.
10.
Kim
,
H. J.
,
Fernandez
,
J. W.
,
Akbarshahi
,
M.
,
Walter
,
J. P.
,
Fregly
,
B. J.
, and
Pandy
,
M. G.
,
2009
, “
Evaluation of Predicted Knee-Joint Muscle Forces During Gait Using an Instrumented Knee Implant
,”
J. Orthop. Res.
,
27
(
10
), pp.
1326
1331
.
11.
Lin
,
Y. C.
,
Walter
,
J. P.
,
Banks
,
S. A.
,
Pandy
,
M. G.
, and
Fregly
,
B. J.
,
2010
, “
Simultaneous Prediction of Muscle and Contact Forces in the Knee During Gait
,”
J. Biomech.
,
43
(
5
), pp.
945
952
.
12.
Taylor
,
W. R.
,
Heller
,
M. O.
,
Bergmann
,
G.
, and
Duda
,
G. N.
,
2004
, “
Tibio-Femoral Loading During Human Gait and Stair Climbing
,”
J. Orthop. Res.
,
22
(
3
), pp.
625
632
.
13.
Fregly
,
B. J.
,
Besier
,
T. F.
,
Lloyd
,
D. G.
,
Delp
,
S. L.
,
Banks
,
S. A.
,
Pandy
,
M. G.
, and
D'Lima
,
D. D.
,
2012
, “
Grand Challenge Competition to Predict In Vivo Knee Loads
,”
J. Orthop. Res.
,
30
(
4
), pp.
503
513
.
14.
Kinney
,
A. L.
,
Besier
,
T. F.
,
D'Lima
,
D. D.
, and
Fregly
,
B. J.
,
2013
, “
Update on Grand Challenge Competition to Predict In Vivo Knee Loads
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021012
.
15.
Manal
,
K.
, and
Buchanan
,
T. S.
,
2013
, “
An Electromyogram-Driven Musculoskeletal Model of the Knee to Predict In Vivo Joint Contact Forces During Normal and Novel Gait Patterns
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021014
.
16.
Anderson
,
A. E.
,
Ellis
,
B. J.
, and
Weiss
,
J. A.
,
2007
, “
Verification, Validation and Sensitivity Studies in Computational Biomechanics
,”
Comput. Methods Biomech. Biomed. Eng.
,
10
(
3
), pp.
171
184
.
17.
Laz
,
P. J.
, and
Browne
,
M.
,
2010
, “
A Review of Probabilistic Analysis in Orthopaedic Biomechanics
,”
Proc. Inst. Mech. Eng., Part H
,
224
(
8
), pp.
927
943
.
18.
Brand
,
R. A.
,
Pedersen
,
D. R.
, and
Friederich
,
J. A.
,
1986
, “
The Sensitivity of Muscle Force Predictions to Changes in Physiologic Cross-Sectional Area
,”
J. Biomech.
,
19
(
8
), pp.
589
596
.
19.
Scovil
,
C. Y.
, and
Ronsky
,
J. L.
,
2006
, “
Sensitivity of a Hill-Based Muscle Model to Perturbations in Model Parameters
,”
J. Biomech.
,
39
(
11
), pp.
2055
2063
.
20.
Redl
,
C.
,
Gfoehler
,
M.
, and
Pandy
,
M. G.
,
2007
, “
Sensitivity of Muscle Force Estimates to Variations in Muscle–Tendon Properties
,”
Hum. Mov. Sci.
,
26
(
2
), pp.
306
319
.
21.
De Groote
,
F.
,
Van Campen
,
A.
,
Jonkers
,
I.
, and
De Schutter
,
J.
,
2010
, “
Sensitivity of Dynamic Simulations of Gait and Dynamometer Experiments to Hill Muscle Model Parameters of Knee Flexors and Extensors
,”
J. Biomech.
,
43
(
10
), pp.
1876
1883
.
22.
Ackland
,
D. C.
,
Lin
,
Y. C.
, and
Pandy
,
M. G.
,
2012
, “
Sensitivity of Model Predictions of Muscle Function to Changes in Moment Arms and Muscle–Tendon Properties: A Monte Carlo Analysis
,”
J. Biomech.
,
45
(
8
), pp.
1463
1471
.
23.
Cleather
,
D. I.
, and
Bull
,
A. M.
,
2010
, “
Lower-Extremity Musculoskeletal Geometry Affects the Calculation of Patellofemoral Forces in Vertical Jumping and Weightlifting
,”
Proc. Inst. Mech. Eng., Part H
,
224
(
9
), pp.
1073
1083
.
24.
Carbone
,
V.
,
van der Krogt
,
M. M.
,
Koopman
,
H. F.
, and
Verdonschot
,
N.
,
2012
, “
Sensitivity of Subject-Specific Models to Errors in Musculo-Skeletal Geometry
,”
J. Biomech.
,
45
(
14
), pp.
2476
2480
.
25.
Valente
,
G.
,
Martelli
,
S.
,
Taddei
,
F.
,
Farinella
,
G.
, and
Viceconti
,
M.
,
2012
, “
Muscle Discretization Affects the Loading Transferred to Bones in Lower-Limb Musculoskeletal Models
,”
Proc. Inst. Mech. Eng., Part H
,
226
(
2
), pp.
161
169
.
26.
Martelli
,
S.
,
Valente
,
G.
,
Viceconti
,
M.
, and
Taddei
,
F.
,
2015
, “
Sensitivity of a Subject-Specific Musculoskeletal Model to the Uncertainties on the Joint Axes Location
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
14
), pp.
1555
1563
.
27.
Cleather
,
D. J.
, and
Bull
,
A. M.
,
2011
, “
Knee and Hip Joint Forces—Sensitivity to the Degrees of Freedom Classification at the Knee
,”
Proc. Inst. Mech. Eng., Part H
,
225
(
6
), pp.
621
626
.
28.
Duprey
,
S.
,
Cheze
,
L.
, and
Dumas
,
R.
,
2010
, “
Influence of Joint Constraints on Lower Limb Kinematics Estimation From Skin Markers Using Global Optimization
,”
J. Biomech.
,
43
(
14
), pp.
2858
2862
.
29.
Dumas
,
R.
,
Moissenet
,
F.
,
Gasparutto
,
X.
, and
Cheze
,
L.
,
2012
, “
Influence of Joint Models on Lower-Limb Musculo-Tendon Forces and Three-Dimensional Joint Reaction Forces During Gait
,”
Proc. Inst. Mech. Eng., Part H
,
226
(
2
), pp.
146
160
.
30.
El Habachi
,
A.
,
Moissenet
,
F.
,
Duprey
,
S.
,
Cheze
,
L.
, and
Dumas
,
R.
,
2015
, “
Global Sensitivity Analysis of the Joint Kinematics During Gait to the Parameters of a Lower Limb Multi-Body Model
,”
Med. Biol. Eng. Comput.
,
53
(
7
), pp.
655
667
.
31.
Moniz-Pereira
,
V.
,
Cabral
,
S.
,
Carnide
,
F.
, and
Veloso
,
A. P.
,
2014
, “
Sensitivity of Joint Kinematics and Kinetics to Different Pose Estimation Algorithms and Joint Constraints in the Elderly
,”
J. Appl. Biomech.
,
30
(
3
), pp.
446
460
.
32.
Della Croce
,
U.
,
Cappozzo
,
A.
, and
Kerrigan
,
D. C.
,
1999
, “
Pelvis and Lower Limb Anatomical Landmark Calibration Precision and Its Propagation to Bone Geometry and Joint Angles
,”
Med. Biol. Eng. Comput.
,
37
(
2
), pp.
155
161
.
33.
Langenderfer
,
J. E.
,
Laz
,
P. J.
,
Petrella
,
A. J.
, and
Rullkoetter
,
P. J.
,
2008
, “
An Efficient Probabilistic Methodology for Incorporating Uncertainty in Body Segment Parameters and Anatomical Landmarks in Joint Loadings Estimated From Inverse Dynamics
,”
ASME J. Biomech. Eng.
,
130
(
1
), p.
014502
.
34.
Rao
,
G.
,
Amarantini
,
D.
,
Berton
,
E.
, and
Favier
,
D.
,
2006
, “
Influence of Body Segments' Parameters Estimation Models on Inverse Dynamics Solutions During Gait
,”
J. Biomech.
,
39
(
8
), pp.
1531
1536
.
35.
Pal
,
S.
,
Langenderfer
,
J. E.
,
Stowe
,
J. Q.
,
Laz
,
P. J.
,
Petrella
,
A. J.
, and
Rullkoetter
,
P. J.
,
2007
, “
Probabilistic Modeling of Knee Muscle Moment Arms: Effects of Methods, Origin-Insertion, and Kinematic Variability
,”
Ann. Biomed. Eng.
,
35
(
9
), pp.
1632
1642
.
36.
Myers
,
C. A.
,
Laz
,
P. J.
,
Shelburne
,
K. B.
, and
Davidson
,
B. S.
,
2015
, “
A Probabilistic Approach to Quantify the Impact of Uncertainty Propagation in Musculoskeletal Simulations
,”
Ann. Biomed. Eng.
,
43
(
5
), pp.
1098
1111
.
37.
Valente
,
G.
,
Pitto
,
L.
,
Testi
,
D.
,
Seth
,
A.
,
Delp
,
S. L.
,
Stagni
,
R.
,
Viceconti
,
M.
, and
Taddei
,
F.
,
2014
, “
Are Subject-Specific Musculoskeletal Models Robust to the Uncertainties in Parameter Identification?
PloS One
,
9
(
11
), p.
e112625
.
38.
Kirking
,
B.
,
Krevolin
,
J.
,
Townsend
,
C.
,
Colwell
,
C. W.
, Jr.
, and
D'Lima
,
D. D.
,
2006
, “
A Multiaxial Force-Sensing Implantable Tibial Prosthesis
,”
J. Biomech.
,
39
(
9
), pp.
1744
1751
.
39.
D'Lima
,
D. D.
,
Townsend
,
C. P.
,
Arms
,
S. W.
,
Morris
,
B. A.
, and
Colwell
,
C. W.
, Jr.
,
2005
, “
An Implantable Telemetry Device to Measure Intra-Articular Tibial Forces
,”
J. Biomech.
,
38
(
2
), pp.
299
304
.
40.
Delp
,
S. L.
,
Loan
,
J. P.
,
Hoy
,
M. G.
,
Zajac
,
F. E.
,
Topp
,
E. L.
, and
Rosen
,
J. M.
,
1990
, “
An Interactive Graphics-Based Model of the Lower Extremity to Study Orthopaedic Surgical Procedures
,”
IEEE Trans. Biomed. Eng.
,
37
(
8
), pp.
757
767
.
41.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
,
D. G.
,
2007
, “
OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
1940
1950
.
42.
Arnold
,
E. M.
,
Ward
,
S. R.
,
Lieber
,
R. L.
, and
Delp
,
S. L.
,
2010
, “
A Model of the Lower Limb for Analysis of Human Movement
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
269
279
.
43.
DeMers
,
M. S.
,
Pal
,
S.
, and
Delp
,
S. L.
,
2014
, “
Changes in Tibiofemoral Forces Due to Variations in Muscle Activity During Walking
,”
J. Orthop. Res.
,
32
(
6
), pp.
769
776
.
44.
Krevolin
,
J. L.
,
Pandy
,
M. G.
, and
Pearce
,
J. C.
,
2004
, “
Moment Arm of the Patellar Tendon in the Human Knee
,”
J. Biomech.
,
37
(
5
), pp.
785
788
.
45.
Buford
,
W. L.
, Jr.
,
Ivey
,
F. M.
, Jr.
,
Malone
,
J. D.
,
Patterson
,
R. M.
,
Peare
,
G. L.
,
Nguyen
,
D. K.
, and
Stewart
,
A. A.
,
1997
, “
Muscle Balance at the Knee: Moment Arms for the Normal Knee and the ACL-Minus Knee
,”
IEEE Trans. Rehabil. Eng.
,
5
(
4
), pp.
367
379
.
46.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
2001
, “
Static and Dynamic Optimization Solutions for Gait are Practically Equivalent
,”
J. Biomech.
,
34
(
2
), pp.
153
161
.
47.
Fang
,
D. M.
,
Ritter
,
M. A.
, and
Davis
,
K. E.
,
2009
, “
Coronal Alignment in Total Knee Arthroplasty: Just How Important is It?
J. Arthroplasty
,
24
(
6 Suppl.
), pp.
39
43
.
48.
Lerner
,
Z. F.
,
DeMers
,
M. S.
,
Delp
,
S. L.
, and
Browning
,
R. C.
,
2015
, “
How Tibiofemoral Alignment and Contact Locations Affect Predictions of Medial and Lateral Tibiofemoral Contact Forces
,”
J. Biomech.
,
48
(
4
), pp.
644
650
.
49.
Thelen
,
D. G.
,
2003
, “
Adjustment of Muscle Mechanics Model Parameters to Simulate Dynamic Contractions in Older Adults
,”
ASME J. Biomech. Eng.
,
125
(
1
), pp.
70
77
.
50.
Zajac
,
F. E.
,
1989
, “
Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,”
Crit. Rev. Biomed. Eng.
,
17
(
4
), pp.
359
411
.
51.
Hortobagyi
,
T.
,
Zheng
,
D.
,
Weidner
,
M.
,
Lambert
,
N. J.
,
Westbrook
,
S.
, and
Houmard
,
J. A.
,
1995
, “
The Influence of Aging on Muscle Strength and Muscle Fiber Characteristics With Special Reference to Eccentric Strength
,”
J. Gerontol. A Biol. Sci. Med. Sci.
,
50A
(
6
), pp.
B399
B406
.
52.
Krivickas
,
L. S.
,
Suh
,
D.
,
Wilkins
,
J.
,
Hughes
, V
. A.
,
Roubenoff
,
R.
, and
Frontera
,
W. R.
,
2001
, “
Age- and Gender-Related Differences in Maximum Shortening Velocity of Skeletal Muscle Fibers
,”
Am. J. Phys. Med. Rehabil.
,
80
(
6
), pp.
447
455; quiz 456–447
.
53.
Ward
,
S. R.
,
Eng
,
C. M.
,
Smallwood
,
L. H.
, and
Lieber
,
R. L.
,
2009
, “
Are Current Measurements of Lower Extremity Muscle Architecture Accurate?
Clin. Orthop. Relat. Res.
,
467
(
4
), pp.
1074
1082
.
54.
Powell
,
P. L.
,
Roy
,
R. R.
,
Kanim
,
P.
,
Bello
,
M. A.
, and
Edgerton
,
V. R.
,
1984
, “
Predictability of Skeletal Muscle Tension From Architectural Determinations in Guinea Pig Hindlimbs
,”
J. Appl. Physiol.
,
57
(
6
), pp.
1715
1721
.
55.
Lieber
,
R. L.
,
Loren
,
G. J.
, and
Friden
,
J.
,
1994
, “
In Vivo Measurement of Human Wrist Extensor Muscle Sarcomere Length Changes
,”
J. Neurophysiol.
,
71
(
3
), pp.
874
881
.
56.
Garner
,
B. A.
, and
Pandy
,
M. G.
,
2003
, “
Estimation of Musculotendon Properties in the Human Upper Limb
,”
Ann. Biomed. Eng.
,
31
(
2
), pp.
207
220
.
57.
Duda
,
G. N.
,
Brand
,
D.
,
Freitag
,
S.
,
Lierse
,
W.
, and
Schneider
,
E.
,
1996
, “
Variability of Femoral Muscle Attachments
,”
J. Biomech.
,
29
(
9
), pp.
1185
1190
.
58.
White
,
S. C.
,
Yack
,
H. J.
, and
Winter
,
D. A.
,
1989
, “
A Three-Dimensional Musculoskeletal Model for Gait Analysis. Anatomical Variability Estimates
,”
J. Biomech.
,
22
(
8–9
), pp.
885
893
.
59.
Kepple
,
T. M.
,
Arnold
,
A. S.
,
Stanhope
,
S. J.
, and
Siegel
,
K. L.
,
1994
, “
Assessment of a Method to Estimate Muscle Attachments From Surface Landmarks: A 3D Computer Graphics Approach
,”
J. Biomech.
,
27
(
3
), pp.
365
371
.
60.
Martelli
,
S.
,
Calvetti
,
D.
,
Somersalo
,
E.
, and
Viceconti
,
M.
,
2015
, “
Stochastic Modelling of Muscle Recruitment During Activity
,”
Interface Focus
,
5
(
2
), p.
20140094
.
61.
da Fonseca
,
S. T.
,
Vaz
,
D. V.
,
de Aquino
,
C. F.
, and
Bricio
,
R. S.
,
2006
, “
Muscular Co-Contraction During Walking and Landing From a Jump: Comparison Between Genders and Influence of Activity Level
,”
J. Electromyogr. Kinesiol.
,
16
(
3
), pp.
273
280
.
62.
Scheys
,
L.
,
Spaepen
,
A.
,
Suetens
,
P.
, and
Jonkers
,
I.
,
2008
, “
Calculated Moment–Arm and Muscle–Tendon Lengths During Gait Differ Substantially Using MR Based Versus Rescaled Generic Lower-Limb Musculoskeletal Models
,”
Gait Posture
,
28
(
4
), pp.
640
648
.
63.
Friederich
,
J. A.
, and
Brand
,
R. A.
,
1990
, “
Muscle Fiber Architecture in the Human Lower Limb
,”
J. Biomech.
,
23
(
1
), pp.
91
95
.
64.
Shelburne
,
K. B.
, and
Pandy
,
M. G.
,
1997
, “
A Musculoskeletal Model of the Knee for Evaluating Ligament Forces During Isometric Contractions
,”
J. Biomech.
,
30
(
2
), pp.
163
176
.
65.
Correa
,
T. A.
, and
Pandy
,
M. G.
,
2011
, “
A Mass-Length Scaling Law for Modeling Muscle Strength in the Lower Limb
,”
J. Biomech.
,
44
(
16
), pp.
2782
2789
.
66.
Handsfield
,
G. G.
,
Meyer
,
C. H.
,
Hart
,
J. M.
,
Abel
,
M. F.
, and
Blemker
,
S. S.
,
2014
, “
Relationships of 35 Lower Limb Muscles to Height and Body Mass Quantified Using MRI
,”
J. Biomech.
,
47
(
3
), pp.
631
638
.
67.
Blemker
,
S. S.
,
Asakawa
,
D. S.
,
Gold
,
G. E.
, and
Delp
,
S. L.
,
2007
, “
Image-Based Musculoskeletal Modeling: Applications, Advances, and Future Opportunities
,”
J. Magn. Reson. Imaging
,
25
(
2
), pp.
441
451
.
68.
Arnold
,
A. S.
,
Salinas
,
S.
,
Asakawa
,
D. J.
, and
Delp
,
S. L.
,
2000
, “
Accuracy of Muscle Moment Arms Estimated From MRI-Based Musculoskeletal Models of the Lower Extremity
,”
Comput. Aided Surg.
,
5
(
2
), pp.
108
119
.
69.
Torry
,
M. R.
,
Shelburne
,
K. B.
,
Myers
,
C.
,
Giphart
,
J. E.
,
Pennington
,
W. W.
,
Krong
,
J. P.
,
Peterson
,
D. S.
,
Steadman
,
J. R.
, and
Woo
,
S. L.
,
2013
, “
High Knee Valgus in Female Subjects Does Not Yield Higher Knee Translations During Drop Landings: A Biplane Fluoroscopic Study
,”
J. Orthop. Res.
,
31
(
2
), pp.
257
267
.
You do not currently have access to this content.