Abstract

The numerical prediction of chaos and quasi-periodic motion on the homoclinic surface of a two-degree-of-freedom (2-DOF) nonlinear Hamiltonian system is presented through the energy spectrum method. For weak interactions, the analytical conditions for chaotic motion in such a Hamiltonian system are presented through the incremental energy approach. The Poincaré mapping surfaces of chaotic motions for this specific nonlinear Hamiltonian system are illustrated. The chaotic and quasi-periodic motions on the phase planes, displacement subspace (or potential domains), and the velocity subspace (or kinetic energy domains) are illustrated for a better understanding of motion behaviors on the homoclinic surface. Through this investigation, it is observed that the chaotic and quasi-periodic motions almost fill on the homoclinic surface of the 2-DOF nonlinear Hamiltonian system. The resonant-periodic motions for such a system are theoretically countable but numerically inaccessible. Such conclusions are similar to the ones in the KAM theorem even though the KAM theorem is based on the small perturbation.

1.
Poincaré
,
H.
, 1892,
Les Methods Nouvelles de la Mechanique Celeste
,
Gauthier-Villars
,
Paris
.
2.
Birkhoff
,
G. D.
, 1927,
Dynamical Systems
,
American Mathematical Society
,
New York
.
3.
Arnold
,
V. I.
, 1989,
Mathematical Methods of Classic Mechanics
.
Springer-Verlag
,
Berlin
.
4.
Arnold
,
V. I.
, 1964, “
Instability of Dynamical Systems With Several Degrees of Freedom
,”
Sov. Math. Dokl.
0197-6788,
5
, pp.
581
585
.
5.
Henon
,
M.
, and
Heiles
,
C.
, 1964, “
The Applicability of the Third Integral Motion: Some Numerical Experiments
,”
Astron. J.
0004-6256,
69
, pp.
73
79
.
6.
Walker
,
G. H.
, and
Ford
,
J.
, 1969, “
Amplitude Instability and Ergodic Behavior for Conservative Nonlinear Oscillator Systems
,”
Phys. Rev.
0031-899X,
188
, pp.
416
432
.
7.
Melnikov
,
V. K.
, 1962, “
On the Behavior of Trajectories of System Near to Autonomous Hamiltonian Systems
,”
Sov. Math. Dokl.
0197-6788,
3
, pp.
109
112
.
8.
Melnikov
,
V. K.
, 1963, “
On the Stability of the Center for Time Periodic Perturbations
,”
Trans. Mosc. Math. Soc.
0077-1554,
12
, pp.
1
57
.
9.
Filonenko
,
N. N.
,
Sagdeev
,
R. Z.
, and
Zaslavsky
,
G. M.
, 1967, “
Destruction of Magnetic Surfaces by Magnetic Field Irregularities: Part II
,”
Nucl. Fusion
0029-5515,
7
, pp.
253
266
.
10.
Zaslavsky
,
G. M.
, and
Filonenko
,
N. N.
, 1968, “
Stochastic Instability of Trapped Particles and Conditions of Application of the Quasi-Linear Approximation
,”
Sov. Phys. JETP
0038-5646,
27
, pp.
851
857
.
11.
Zaslavsky
,
G. M.
, 1967, “
Stochastic Instability of Nonlinear Oscillations
,”
J. Appl. Mech. Tech. Phys.
0021-8944,
2
, pp.
16
22
.
12.
Zaslavsky
,
G. M.
, and
Chirikov
,
B. V.
, 1972, “
Stochastic Instability of Nonlinear Oscillations
,”
Sov. Phys. Usp.
0038-5670,
52
, pp.
263
272
.
13.
Chirikov
,
B. V.
, 1979, “
A Universal Instability of Many-Dimensional Oscillator Systems
,”
Phys. Rep.
0370-1573,
52
, pp.
263
379
.
14.
Escande
,
D. F.
, and
Doveil
,
F.
, 1981, “
Renormalization Method for the Onset of Stochasticity in a Hamiltonian System
,”
Phys. Lett.
0375-9601,
83A
, pp.
307
310
.
15.
Escande
,
D. F.
, 1985, “
Stochasticity in Classic Hamiltonian Systems: Universal Aspects
,”
Phys. Rep.
0370-1573,
121
, pp.
165
261
.
16.
Luo
,
A. C. J.
, 1995, “
Analytical Modeling of Bifurcations, Chaos, and Multifractals in Nonlinear Dynamics
,” Ph.D. dissertation, University of Manitoba, Winnipeg.
17.
Luo
,
A. C. J.
, and
Han
,
R. P. S.
, 2001, “
The Resonance Theory for Stochastic Layers in Nonlinear Dynamical Systems
,”
Chaos, Solitons Fractals
0960-0779,
12
, pp.
2493
2508
.
18.
Luo
,
A. C. J.
,
Gu
,
K.
, and
Han
,
R. P. S.
, 1999, “
Resonant-Separatrix Webs in Stochastic Layers of the Twin-Well Duffing Oscillator
.”
Nonlinear Dyn.
0924-090X,
19
, pp.
37
48
.
19.
Han
,
R. P. S.
, and
Luo
,
A. C. J.
, 1998, “
Resonant Layers in Nonlinear Dynamics
,”
ASME J. Appl. Mech.
0021-8936,
65
, pp.
727
736
.
20.
Luo
,
A. C. J.
, 2002, “
Resonant Layers in a Parametrically Excited Pendulum
.”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
12
(
2
), pp.
409
419
.
21.
Luo
,
A. C. J.
, 2004, “
Nonlinear Dynamics Theory of Stochastic Layers in Nonlinear Hamiltonian
,”
Appl. Mech. Rev.
0003-6900,
57
, pp.
161
172
.
22.
Gidea
,
M.
, and
Deppe
,
F.
, 2006, “
Chaotic Orbits in a Restricted Three-Body Problem: Numerical Experiments and Heuristics
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
11
, pp.
161
171
.
You do not currently have access to this content.