Abstract

A harmonically excited, single-degree-of-freedom time-delay system with cubic and quintic nonlinearities is studied. This system describes the direct resonance of a ship with an actively controlled antiroll tank (ART) that is subjected to beam waves. We consider low-, medium-, and high-freeboard ship models. A proportional–derivative (PD) controller with a constant time delay is assumed to operate the pump in the active ART system. The delay originates from the time required to pump fluid from one container to another, the inertia of large impeller blades and linkages, and the measurement and processing time of the roll-sensing unit. The stability boundary of the system, in the parametric space of the control gain and the delay, is derived analytically from the characteristic equation of the linearized system. We show that the area of the zero equilibrium region is inversely related to the derivative time constant of the PD controller; thus, we focus on a strictly proportional-gain controller. The spectral Tau method is used to identify the eigenvalues associated with the zero equilibrium since the rightmost eigenvalues determine the system's robustness to perturbations in the initial conditions. We use the method of multiple scales and harmonic balance to obtain the global bifurcation diagram in the space of the applied frequency and the amplitude of the response. Numerical simulations verify our analytical expressions. Study of the dynamics, stability, and control of the roll motion of ships is critical to avoid dynamic instabilities and capsizing.

References

1.
Zhou
,
B.
,
Qi
,
X.
,
Zhang
,
J.
, and
Zhang
,
H.
,
2021
, “
Effect of 6-DOF Oscillation of Ship Target on SAR Imaging
,”
Remote Sens.
,
13
(
9
), p.
1821
.10.3390/rs13091821
2.
Molnar
,
T. G.
,
Dombovari
,
Z.
,
Insperger
,
T.
, and
Stepan
,
G.
,
2017
, “
On the Analysis of the Double Hopf Bifurcation in Machining Processes Via Centre Manifold Reduction
,”
Proc. R. Soc. A
,
473
(
2207
), p.
20170502
.10.1098/rspa.2017.0502
3.
Beregi
,
S.
,
Takacs
,
D.
, and
Stepan
,
G.
,
2019
, “
Bifurcation Analysis of Wheel Shimmy With Non-Smooth Effects and Time Delay in the Tyre–Ground Contact
,”
Nonlinear Dyn.
,
98
(
1
), pp.
841
858
.10.1007/s11071-019-05123-1
4.
Zhang
,
L.
, and
Stepan
,
G.
,
2020
, “
Bifurcations in Basic Models of Delayed Force Control
,”
Nonlinear Dyn.
,
99
(
1
), pp.
99
108
.10.1007/s11071-019-05058-7
5.
Nayfeh
,
A. H.
, and
Khdeir
,
A. A.
,
1986
, “
Nonlinear Rolling of Ships in Regular Beam Seas
,”
Int. Shipbuild. Prog.
,
33
(
379
), pp.
40
49
.10.3233/ISP-1986-3337901
6.
Nayfeh
,
A. H.
, and
Khdeir
,
A. A.
,
1986
, “
Nonlinear Rolling of Biased Ships in Regular Beam Waves
,”
Int. Shipbuild. Prog.
,
33
(
381
), pp.
84
93
.10.3233/ISP-1986-3338102
7.
Thompson
,
J. M. T.
,
Rainey
,
R. C. T.
, and
Soliman
,
M. S.
,
1992
, “
Mechanics of Ship Capsize Under Direct and Parametric Wave Excitation
,”
Philos. Trans. A Math. Phys. Eng. Sci.
,
338
(
1651
), pp.
471
490
.10.1098/rsta.1992.0015
8.
Thompson
,
J. M. T.
, and
Stewart
,
H. B.
,
2002
,
Nonlinear Dynamics and Chaos
, 2nd ed.,
Wiley
,
Chichester, UK
.
9.
Senjanović
,
I.
,
Parunov
,
J.
, and
Ciprić
,
G.
,
1997
, “
Safety Analysis of Ship Rolling in Rough Sea
,”
Chaos Solitons Fractals
,
8
(
4
), pp.
659
680
.10.1016/S0960-0779(96)00114-2
10.
Spyrou
,
K. J.
, and
Thompson
,
J. M. T.
,
2000
, “
The Nonlinear Dynamics of Ship Motions: A Field Overview and Some Recent Developments
,”
Philos. Trans. A Math. Phys. Eng. Sci.
,
358
(
1771
), pp.
1735
1760
.10.1098/rsta.2000.0613
11.
Spyrou
,
K. J.
,
2005
, “
Design Criteria for Parametric Rolling
,”
Ocean. Eng. Int.
,
9
(
1
), pp.
11
27
.
12.
Ibrahim
,
R. A.
, and
Grace
,
I. M.
,
2010
, “
Modeling of Ship Roll Dynamics and Its Coupling With Heave and Pitch
,”
Math. Probl. Eng.
,
2010
, p. 934714.10.1155/2010/934714
13.
Neves
,
M. A. S.
,
2016
, “
Dynamic Stability of Ships in Regular and Irregular Seas – An Overview
,”
Ocean. Eng.
,
120
, pp.
362
370
.10.1016/j.oceaneng.2016.02.010
14.
Froude
,
W.
,
1874
, “
Considerations Respecting the Rolling of Ships at Sea
,”
Trans. Inst. Nav. Archit.
,
14
, pp.
96
116
.
15.
Watts
,
P.
,
1885
, “
The Use of Water Chambers for Reducing the Rolling of Ships at Sea
,”
Trans. Inst. Nav. Archit.
,
26
, p.
30
.
16.
Frahm
,
H. H.
,
1911
, “
Results of Trials of the Anti-Rolling Tanks at Sea
,”
J. Am. Soc. Nav. Eng.
,
23
(
2
), pp.
571
597
.10.1111/j.1559-3584.1911.tb04595.x
17.
Minorsky
,
N.
,
1935
, “
Problems of Anti-Rolling Stabilization of Ships by the Activated Tank Method
,”
J. Am. Soc. Nav. Eng.
,
47
(
1
), pp.
87
119
.10.1111/j.1559-3584.1935.tb04304.x
18.
Minorsky
,
N.
,
1941
, “
Note on the Angular Motions of Ships
,”
ASME J. Appl. Mech.
,
8
(
3
), pp.
A111
A120
.10.1115/1.4009116
19.
Chadwick
,
J. H.
, and
Klotter
,
K.
,
1954
, “
On the Dynamics of Anti-Roll Tanks
,”
Schiffstechnik
,
2
, pp.
23
45
.
20.
Stigter
,
C.
,
1966
, “
The Performance of U-Tanks as a Passive Anti-Rolling Device
,”
Int. Shipbuild. Prog.
,
13
(
144
), pp.
249
275
.10.3233/ISP-1966-1314401
21.
Van den Bosch
,
J. J.
, and
Vugts
,
J. H.
,
1966
, “
On Roll Damping by Free-Surface Tanks
,”
Trans. R. Inst. Nav. Archit.
,
108
, pp.
345
361
.
22.
Abdel Gawad
,
A. F.
,
Ragab
,
S. A.
,
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
2001
, “
Roll Stabilization by Anti-Roll Passive Tanks
,”
Ocean. Eng.
,
28
(
5
), pp.
457
469
.10.1016/S0029-8018(00)00015-9
23.
Youssef
,
K. S.
,
Ragab
,
S. A.
,
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
2002
, “
Design of Passive Anti-Roll Tanks for Roll Stabilization in the Nonlinear Range
,”
Ocean. Eng.
,
29
(
2
), pp.
177
192
.10.1016/S0029-8018(01)00021-X
24.
Youssef
,
K. S.
,
Mook
,
D. T.
,
Nayfeh
,
A. H.
, and
Ragab
,
S. A.
,
2003
, “
Roll Stabilization by Passive Anti-Roll Tanks Using an Improved Model of the Tank-Liquid Motion
,”
J. Vib. Control
,
9
(
7
), pp.
839
862
.10.1177/1077546303009007006
25.
Marzouk
,
O. A.
, and
Nayfeh
,
A. H.
,
2009
, “
Control of Ship Roll Using Passive and Active Anti-Roll Tanks
,”
Ocean. Eng.
,
36
(
9–10
), pp.
661
671
.10.1016/j.oceaneng.2009.03.005
26.
Moaleji
,
R.
, and
Greig
,
A. R.
,
2007
, “
On the Development of Ship Anti-Roll Tanks
,”
Ocean. Eng.
,
34
(
1
), pp.
103
121
.10.1016/j.oceaneng.2005.12.013
27.
Vugts
,
J. H.
,
1969
, “
A Comparative Study on Four Different Passive Roll Damping Tanks
,”
Int. Shipbuild. Prog.
,
16
(
179
), pp.
212
223
.10.3233/ISP-1969-1617903
28.
Shin
,
Y. S.
,
Belenky
,
V. L.
,
Lin
,
W. M.
,
Weems
,
K. M.
, and
Engle
,
A. H.
,
2003
, “
Nonlinear Time Domain Simulation Technology for Seakeeping and Wave-Load Analysis for Modern Ship Design
,”
Trans. Soc. Nav. Archit. Mar. Eng.
,
111
, pp.
557
583
.
29.
Phairoh
,
T.
, and
Huang
,
J.-K.
,
2005
, “
Modeling and Analysis of Ship Roll Tank Stimulator Systems
,”
Ocean. Eng.
,
32
(
8–9
), pp.
1037
1053
.10.1016/j.oceaneng.2004.09.007
30.
Alujević
,
N.
,
Ćatipović
,
I.
,
Malenica
,
Š.
,
Senjanović
,
I.
, and
Vladimir
,
N.
,
2019
, “
Ship Roll Control and Power Absorption Using a U-Tube Anti-Roll Tank
,”
Ocean. Eng.
,
172
, pp.
857
870
.10.1016/j.oceaneng.2018.12.007
31.
Kučera
,
V.
,
Pilbauer
,
D.
,
Vyhlídal
,
T.
, and
Olgac
,
N.
,
2017
, “
Extended Delayed Resonators – Design and Experimental Verification
,”
Mechatronics
,
41
, pp.
29
44
.10.1016/j.mechatronics.2016.10.019
32.
Spyrou
,
K. J.
,
1999
, “
On Course-Stability and Control Delay
,”
Int. Shipbuild. Prog.
,
46
(
448
), pp.
421
443
.http://shipdynamics.ntua.gr/publications/ISP_1999_Spyrou.pdf
33.
Nayfeh
,
A. H.
,
2004
,
Introduction to Perturbation Techniques
,
Wiley-VCH
,
Weinheim, Germany
.
34.
Mickens
,
R. E.
,
2010
,
Truly Nonlinear Oscillations: Harmonic Balance, Parameter Expansions, Iteration, and Averaging Methods
,
World Scientific
,
Singapore
.
35.
Kuznetsov
,
Y.
,
2004
,
Elements of Applied Bifurcation Theory
, 3rd ed.,
Springer-Verlag
,
New York
.
36.
Vyasarayani
,
C. P.
,
Subhash
,
S.
, and
Kalmár-Nagy
,
T.
,
2014
, “
Spectral Approximations for Characteristic Roots of Delay Differential Equations
,”
Int. J. Dyn. Control
,
2
(
2
), pp.
126
132
.10.1007/s40435-014-0060-2
37.
Wright
,
J. H. G.
, and
Marshfield
,
W. B.
,
1980
, “
Ship Roll Response and Capsize Behaviour in Beam Seas
,”
Trans. R. Inst. Nav. Archit.
,
122
, pp.
129
148
.
38.
Insperger
,
T.
, and
Stépán
,
G.
,
2011
,
Semi-Discretization for Time-Delay Systems: Stability and Engineering Applications
,
Springer
,
New York
.
39.
Campbell
,
S. A.
,
Bélair
,
J.
,
Ohira
,
T.
, and
Milton
,
J.
,
1995
, “
Complex Dynamics and Multistability in a Damped Harmonic Oscillator With Delayed Negative Feedback
,”
Chaos Interdiscip. J. Nonlinear Sci.
,
5
(
4
), pp.
640
645
.10.1063/1.166134
40.
Das
,
S. L.
, and
Chatterjee
,
A.
,
2002
, “
Multiple Scales Without Center Manifold Reductions for Delay Differential Equations Near Hopf Bifurcations
,”
Nonlinear Dyn.
,
30
(
4
), pp.
323
335
.10.1023/A:1021220117746
You do not currently have access to this content.