Abstract

In this article, a numerical scheme is developed for the solution of sixth-order boundary value problems (BVP). The Haar collocation method is developed for both linear and nonlinear boundary value problems. In this method, the sixth-order derivative in boundary value problem is approximated using Haar functions, and integration is used to obtain the values of lower derivatives and approximate solution. Some examples are given for the convergence of the proposed method. The Haar technique devoted in this paper is compared with Septic spline method, Sine–Galerkin method, and decomposition method. Maximum absolute and root-mean-square errors are given for different Gauss and collocation points (CPs). Convergence rate using distinct numbers of nodal points is calculated, which is nearly equal to 2.

References

1.
Chandrasekhar
,
S.
,
1961
,
Hydrodynamic and Hydromagnetic Stability
,
Clarendon Press
,
Oxford
.
2.
Na
,
T.
,
1979
,
Computational Methods in Engineering Boundary Value Problems
,
Academic Press
,
New York
.
3.
Zhang
,
X.
, and
Ge
,
W.
,
2009
, “
Positive Solutions for a Class of Boundary-Value Problems With Integral Boundary Conditions
,”
Comput. Math. Appl.
,
58
(
2
), pp.
203
215
.10.1016/j.camwa.2009.04.002
4.
Glabisz
,
W.
,
2004
, “
The Use of Walsh-Wavelets Packets in Linear Boundary Value Problems
,”
J. Comput. Appl. Math.
,
82
(
2–3
), pp.
131
141
.10.1016/j.compstruc.2003.10.004
5.
Agarwal
,
R. P.
,
1986
,
Boundary Value Problems for Higher-Order Differential Equations
,
World Scientific
,
Singapore
.
6.
Gamel
,
M. E.
,
Cannon
,
J. R.
,
Latour
,
J.
, and
Zayed
,
A. I.
,
2003
, “
Sinc-Galerkin Method for Solving Linear Sixth Order Boundary-Value Problems
,”
Math. Comput.
,
73
(
247
), pp.
1325
1344
.10.1090/S0025-5718-03-01587-4
7.
Boutayeb
,
A.
, and
Twizell
,
E. H.
,
1992
, “
Numerical Methods for the Solution of Special Sixth Order Boundary-Value Problems
,”
Int. J. Comput. Math.
,
45
(
3–4
), pp.
207
223
.10.1080/00207169208804130
8.
Usmani
,
R. A.
,
1978
, “
Discrete Variable Methods for a Boundary Value Problem With Engineering Applications
,”
Math. Comput.
,
32
(
144
), pp.
1087
1096
.10.1090/S0025-5718-1978-0483496-5
9.
Burden
,
R. L.
, and
Faires
,
J. D.
,
2011
,
Numerical Analysis
,
R. Stratton
, Thomson Brooks/Cole, Boston, MA.
10.
Lakestani
,
M.
, and
Dehghan
,
M.
,
2006
, “
The Solution of a Second-Order Nonlinear Differential Equation With Neumann Boundary Conditions Using Semi-Orthogonal b-Spline Wavelets
,”
Int. J. Comput. Math.
,
83
(
8–9
), pp.
685
694
.10.1080/00207160601025656
11.
Al-Said
,
E.
,
2001
, “
The Use of Cubic Splines in the Numerical Solution of System of Second-Order Boundary-Value Problems
,”
Int. J. Comput. Math. Appl.
,
42
(
6–7
), pp.
861
869
.10.1016/S0898-1221(01)00204-8
12.
Tatari
,
M.
, and
Dehghan
,
M.
,
2006
, “
The Use of the Adomian Decomposition Method for Solving Multipoint Boundary Value Problems
,”
Phys. Scr.
,
73
(
6
), pp.
672
676
.10.1088/0031-8949/73/6/023
13.
Tirmizi
,
I.
, and
Twizell
,
E.
,
2002
, “
Higher-Order Finite Difference Methods for Nonlinear Second-Order Two-Point Boundary-Value Problems
,”
Appl. Math. Lett.
,
15
(
7
), pp.
897
902
.10.1016/S0893-9659(02)00060-5
14.
Chen
,
C.
, and
Hsiao
,
C.
,
1997
, “
Haar Wavelet Method for Solving Lumped and Distributed-Parameter Systems
,”
IEEE Proc. Control Theor. Appl.
,
144
(
1
), pp.
87
94
.10.1049/ip-cta:19970702
15.
Lepik
,
U.
,
2011
, “
Solving PDEs With the Aid of Two-Dimensional Haar Wavelets
,”
Comput. Math. Appl.
,
61
(
7
), pp.
1873
1879
.10.1016/j.camwa.2011.02.016
16.
Lepik
,
U.
,
2005
, “
Numerical Solution of Differential Equations Using Haar Wavelets
,”
Math. Comput. Simul.
,
68
(
2
), pp.
127
143
.10.1016/j.matcom.2004.10.005
17.
Lepik
,
U.
,
2006
, “
Haar Wavelet Method for Nonlinear Integro-Differential Equations
,”
Appl. Math. Comput.
,
176
(
1
), pp.
324
333
.10.1016/j.amc.2005.09.021
18.
Majak
,
J.
,
Pohlak
,
M.
,
Karjust
,
K.
,
Eerme
,
M.
,
Kurnitski
,
J.
, and
Shvartsman
,
B.
,
2018
, “
New Higher Order Haar Wavelet Method: Application to FGM Structures
,”
Compos Struct.
,
201
, pp.
72
78
.10.1016/j.compstruct.2018.06.013
19.
Ratas
,
M.
,
Salupere
,
A.
, and
Majak
,
J.
,
2021
, “
Solving Nonlinear PDEs Using the Higher Order Haar Wavelet Method on Nonuniform and Adaptive Grids
,”
Math. Modell. Anal.
,
26
(
1
), pp.
147
169
.10.3846/mma.2021.12920
20.
Ratas
,
M.
, and
Salupere
,
A.
,
2020
, “
Application of Higher Order Haar Wavelet Method for Solving Nonlinear Evolution Equations
,”
Math. Modell. Anal.
,
25
(
2
), pp.
271
288
.10.3846/mma.2020.11112
21.
Majak
,
J.
,
Shvartsman
,
B.
,
Ratas
,
M.
,
Bassir
,
D.
,
Pohlak
,
M.
,
Karjust
,
K.
, and
Eerme
,
M.
,
2020
, “
Higher-Order Haar Wavelet Method for Vibration Analysis of Nanobeams
,”
Mater. Today Commun.
,
25
, p.
101290
.10.1016/j.mtcomm.2020.101290
22.
Majak
,
J.
,
Shvartsman
,
B.
,
Pohlak
,
M.
,
Karjust
,
K.
,
Eerme
,
M.
, and
Tungel
,
E.
,
2019
, “
Solving Ordinary Differential Equations With Higher Order Haar Wavelet Method
,”
AIP Conf. Proc.
,
2116
(
25
), p.
330002
.10.1063/1.5114340
23.
Yasmeen
,
S.
,
Ul Islam
,
S.
, and
Amin
,
R.
,
2023
, “
Higher Order Haar Wavelet Method for Numerical Solution of Integral Equations
,”
Comput. Appl. Math.
,
42
(
4
), p.
147
.10.1007/s40314-023-02283-0
24.
Yasmeen
,
S.
, and
Amin
,
R.
,
2024
, “
Higher-Order Haar Wavelet Method for Solution of Fourth-Order Integro-Differential Equations
,”
J. Comput. Sci.
,
81
, p.
102394
.10.1016/j.jocs.2024.102394
25.
Siddiqi
,
S. S.
, and
Akram
,
G.
,
2008
, “
Septic Spline Solutions of Sixth-Order Boundary Value Problems
,”
J. Comput. Appl. Math.
,
215
(
1
), pp.
288
301
.10.1016/j.cam.2007.04.013
26.
Wazwaz
,
A. M.
,
2015
,
A First Course in Integral Equations
,
World Scientific
,
London
.
27.
Aziz
,
I.
, and
Amin
,
R.
,
2016
, “
Numerical Solution of a Class of Delay Differential and Delay Partial Differential Equations Via Haar Wavelet
,”
Appl. Math. Modell.
,
40
(
23–24
), pp.
10286
10299
.10.1016/j.apm.2016.07.018
28.
Reisenhofer
,
R.
,
Bosse
,
S.
,
Kutyniok
,
G.
, and
Wiegand
,
T.
,
2018
, “
A Haar Wavelet-Based Perceptual Similarity Index for Image Quality Assessment
,”
Signal Process.: Image Commun.
,
61
, pp.
33
43
.10.1016/j.image.2017.11.001
29.
Adigun
,
B. J.
,
Buchan
,
A. G.
,
Adam
,
A.
,
Dargaville
,
S.
,
Goffin
,
M. A.
, and
Pain
,
C. C.
,
2018
, “
A Haar Wavelet Method for Angularly Discretising the Boltzmann Transport Equation
,”
Prog. Nucl. Energy
,
108
, pp.
295
309
.10.1016/j.pnucene.2018.05.023
30.
Dai
,
Q.
,
Cao
,
Q.
, and
Chen
,
Y.
,
2018
, “
Frequency Analysis of Rotating Truncated Conical Shells Using the Haar Wavelet Method
,”
Appl. Math. Modell.
,
57
, pp.
603
613
.10.1016/j.apm.2017.06.025
31.
Singh
,
R.
,
Garg
,
H.
, and
Guleria
,
V.
,
2019
, “
Haar Wavelet Collocation Method for Lane Emden Equations With Dirichlet, Neumann and Neumann Robin Boundary Conditions
,”
J. Comput. Appl. Math.
,
346
, pp.
150
161
.10.1016/j.cam.2018.07.004
32.
Amin
,
R.
,
HAFSA
,
Hadi
,
F.
,
Altanji
,
M.
,
Nisar
,
K. S.
, and
Sumelka
,
W.
,
2023
, “
Solution of Variable Order Nonlinear Fractional Differential Equations Using Haar Wavelet Collocation Technique
,”
Fractals
,
31
, p.
2340022
.10.1142/S0218348X23400224
33.
Amin
,
R.
,
Shah
,
K.
,
Awais
,
M.
,
Mahariq
,
I.
,
Nisar
,
K. S.
, and
Sumelka
,
W.
,
2023
, “
Existence and Solution of Third Order Integro-Differential Equations Via Haar Wavelet Method
,”
Fractals
,
31
(
2
), p.
2340037
.10.1142/S0218348X23400376
34.
Majak
,
J.
,
Shvartsman
,
B.
,
Kirs
,
M.
,
Pohlak
,
M.
, and
Herranen
,
H.
,
2015
, “
Convergence Theorem for the Haar Wavelet Based Discretization Method
,”
Compos. Struct.
,
126
, pp.
227
232
.10.1016/j.compstruct.2015.02.050
You do not currently have access to this content.