Modal analysis of a rotating thin plate is made in this paper through the use of the thin plate elements described by the absolute nodal coordinate formulation (ANCF). The analytical expressions of elastic forces and their Jacobian matrices of the thin plate elements are derived and expressed in a computationally efficient way. The static analysis of a cantilever thin plate and the modal analysis of a square thin plate with completely free boundaries are made to validate the derived formulations. The modal analysis of a rotating cantilever thin plate based on the ANCF is studied. The effect of rotating angular velocity on the natural frequencies is investigated. The eigenvalue loci veering and crossing phenomena along with the corresponding modeshape variations are observed and carefully discussed. Finally, the effects of dimensional parameters on the dimensionless natural frequencies of the thin plate are studied.

1.
Southwell
,
R.
, and
Gough
,
F.
, 1921, β€œ
The Free Transverse Vibration of Airscrew Blades
,” British A.R.C. Reports and Memoranda No. 766.
2.
Schilhansl
,
M.
, 1958, β€œ
Bending Frequency of a Rotating Cantilever Beam
,”
ASME J. Appl. Mech.
0021-8936,
25
, pp.
28
–
30
.
3.
Chung
,
J.
, and
Yoo
,
H. H.
, 2002, β€œ
Dynamic Analysis of a Rotating Cantilever Beam by Using the Finite Element Method
,”
J. Sound Vib.
0022-460X,
249
(
1
), pp.
147
–
164
.
4.
Leissa
,
A. W.
, 1980, β€œ
Vibration of Turbine Engine Blades by Shell Analysis
,”
Shock Vib. Dig.
0583-1024,
12
, pp.
3
–
10
.
5.
Yoo
,
H. H.
, and
Kim
,
S. K.
, 2002, β€œ
Flapwise Bending Vibration of Rotating Plates
,”
Int. J. Numer. Methods Eng.
0029-5981,
55
, pp.
785
–
802
.
6.
Yoo
,
H. H.
, and
Kim
,
S. K.
, 2002, β€œ
Free Vibration Analysis of Rotating Cantilever Plates
,”
AIAA J.
0001-1452,
40
, pp.
2188
–
2196
.
7.
Yoo
,
H. H.
, and
Chung
,
J.
, 2001, β€œ
Dynamics of Rectangular Plates Undergoing Prescribed Overall Motions
,”
J. Sound Vib.
0022-460X,
239
(
1
), pp.
123
–
137
.
8.
Yoo
,
H. H.
, and
Pierre
,
C.
, 2003, β€œ
Modal Characteristic of a Rotating Rectangular Cantilever Plate
,”
J. Sound Vib.
0022-460X,
259
(
1
), pp.
81
–
96
.
9.
Yoo
,
H. H.
,
Kim
,
S. K.
, and
Inman
,
D. J.
, 2002, β€œ
Modal Analysis of Rotating Composite Cantilever Plates
,”
J. Sound Vib.
0022-460X,
258
(
2
), pp.
233
–
246
.
10.
Deshpande
,
M.
, and
Mote
,
C. D.
, Jr.
, 2003, β€œ
In-Plane Vibrations of a Thin Rotating Disk
,”
ASME J. Vibr. Acoust.
0739-3717,
125
(
1
), pp.
68
–
72
.
11.
Wauer
,
J.
, 2004, β€œ
Discussion of In-Plane Vibrations of a Thin Rotating Disk
,”
ASME J. Vibr. Acoust.
0739-3717,
126
(
2
), p.
321
.
12.
Dokainish
,
M. A.
, and
Rawtani
,
S.
, 1971, β€œ
Vibration Analysis of Rotating Cantilever Plates
,”
Int. J. Numer. Methods Eng.
0029-5981,
3
(
2
), pp.
233
–
248
.
13.
Ramamurti
,
V.
, and
Kielb
,
R.
, 1984, β€œ
Natural Frequencies of Twisted Rotating Plates
,”
J. Sound Vib.
0022-460X,
97
, pp.
429
–
449
.
14.
Karmakar
,
A.
, and
Sinha
,
P. K.
, 1997, β€œ
Finite Element Free Vibration Analysis of Rotating Laminated Composite Pretwisted Cantilever Plates
,”
J. Reinf. Plast. Compos.
0731-6844,
16
(
16
), pp.
1461
–
1491
.
15.
Hashemi
,
S. H.
,
Farhadi
,
S.
, and
Carra
,
S.
, 2009, β€œ
Free Vibration Analysis of Rotating Thick Plates
,”
J. Sound Vib.
0022-460X,
323
, pp.
366
–
384
.
16.
Campanelli
,
M.
,
Berzeri
,
M.
, and
Shabana
,
A. A.
, 2000, β€œ
Performance of the Incremental and Non-Incremental Finite Element Formulations in Flexible Multibody Problems
,”
ASME J. Mech. Des.
0161-8458,
122
(
4
), pp.
498
–
507
.
17.
Shabana
,
A. A.
, 1998,
Dynamics of Multibody Systems
, 2nd ed.,
Cambridge University Press
,
Cambridge
.
18.
Shabana
,
A. A.
, and
Yakoub
,
R. Y.
, 2001, β€œ
Three-Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory
,”
ASME J. Mech. Des.
0161-8458,
123
(
4
), pp.
606
–
613
.
19.
GarcΓ­a-Vallejo
,
D.
,
Mikkola
,
A. M.
, and
Escalona
,
J. L.
, 2007, β€œ
A New Locking-Free Shear Deformable Finite Element Based on Absolute Nodal Coordinates
,”
Nonlinear Dyn.
0924-090X,
50
, pp.
249
–
264
.
20.
Gerstmayr
,
J.
,
Matikainen
,
M. K.
, and
Mikkola
,
A. M.
, 2008, β€œ
A Geometrically Exact Beam Element Based on the Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
1384-5640,
20
, pp.
359
–
360
.
21.
Tian
,
Q.
,
Zhang
,
Y.
,
Chen
,
L.
, and
Flores
,
P.
, 2009, β€œ
Dynamics of Spatial Flexible Multibody Systems With Clearance and Lubricated Spherical Joints
,”
Comput. Struct.
0045-7949,
87
, pp.
913
–
929
.
22.
Tian
,
Q.
,
Zhang
,
Y.
,
Chen
,
L.
, and
Yang
,
J.
, 2010, β€œ
Simulation of Planar Flexible Multibody Systems With Clearance and Lubricated Revolute Joints
,”
Nonlinear Dyn.
0924-090X,
60
(
4
), pp.
489
–
511
.
23.
Tian
,
Q.
,
Chen
,
L.
,
Zhang
,
Y.
, and
Yang
,
J.
, 2009, β€œ
An Efficient Hybrid Method for Multibody Dynamics Simulation Based on Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
4
, p.
021009
.
24.
Tian
,
Q.
,
Liu
,
C.
,
Machado
,
M.
, and
Flores
,
P.
, 2011, β€œ
A New Model for Dry and Lubricated Cylindrical Joints With Clearance in Spatial Flexible Multibody Systems
,”
Nonlinear Dyn.
0924-090X,
64
(
1–2
), pp.
25
–
47
.
25.
Shabana
,
A. A.
, and
Christensen
,
A. P.
, 1997, β€œ
Three-Dimensional Absolute Nodal Co-Ordinate Formulation Plate Problem
,”
Int. J. Numer. Methods Eng.
0029-5981,
40
, pp.
2775
–
2790
.
26.
Mikkola
,
A. M.
, and
Shabana
,
A. A.
, 2003, β€œ
A Non-Incremental Finite Element Procedure for the Analysis of Large Deformation of Plates and Shells in Mechanical System Applications
,”
Multibody Syst. Dyn.
1384-5640,
9
(
3
), pp.
283
–
309
.
27.
Dmitrochenko
,
O. N.
, and
Pogorelov
,
D. Yu.
, 2003, β€œ
Generalization of plate Finite Elements for Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
1384-5640,
10
, pp.
17
–
43
.
28.
Yoo
,
W. -S.
,
Lee
,
J. -H.
,
Park
,
S. -J.
,
Sohn
,
J. -H.
,
Pogorelov
,
D.
, and
Dmitrochenko
,
O.
, 2004, β€œ
Large Deflection Analysis of a Thin Plate: Computer Simulations and Experiments
,”
Multibody Syst. Dyn.
1384-5640,
11
, pp.
185
–
208
.
29.
Dufva
,
K.
, and
Shabana
,
A. A.
, 2005, β€œ
Analysis of Thin Plate Structures Using the Absolute Nodal Coordinate Formulation
,”
Proc. Inst. Mech. Eng., Part K: Journal of Multi-body Dynamics
,
219
, pp.
345
–
355
.
30.
Schwab
,
A. L.
,
Gerstmayr
,
J.
, and
Meijaard
,
J. P.
, 2007, β€œ
Comparison of Three-Dimensional Flexible Thin Plate Elements for Multibody Dynamic Analysis: Finite Element Formulation and Absolute Nodal Coordinate Formulation
,”
Proceedings of the ASME IDETC/CIE
, Las Vegas, NV.
31.
Shampine
,
L. F.
,
Ketzscher
,
R.
, and
Shaun A.
Forth
. 2005, β€œ
Using AD to solve BVPs in MATLAB
,”
ACM Trans. Math. Softw.
0098-3500,
31
(
1
), pp.
79
–
94
.
32.
Sugiyama
,
H.
,
Mikkola
,
A. M.
, and
Shabana
,
A. A.
, 2003, β€œ
A Non-Incremental Nonlinear Finite Element Solution for Cable Problems
,”
ASME J. Mech. Des.
0161-8458,
125
, pp.
746
–
756
.
33.
Abaqus Inc.
, 2008, ABAQUS version 6.8, ABAQUS Analysis User’s Manual.
34.
Leissa
,
A.
, 1974, β€œ
On a Curve Veering Aberration
,”
Z. Angew. Math. Phys.
0044-2275,
25
, pp.
99
–
111
.
You do not currently have access to this content.