The solution of linear quadratic predictive optimal control problems for systems represented in state-equation form, but using a polynomial systems approach, is considered. A multistep cost-function is used that includes future set-point information. A novel method is introduced for computing the vector of future controls and for solving a simpler optimization problem for the current control.

1.
Richalet
,
J.
,
Rault
,
A.
,
Testud
,
J. L.
, and
Papon
,
J.
,
1978
, “
Model predictive heuristic control applications to industrial processes
,”
Automatica
,
14
, pp.
414
428
.
2.
Richalet
,
J.
,
1993
, “
Industrial applications of model based predictive control
,”
Automatica
,
29
, No.
8
, pp.
1251
1274
.
3.
Cutler, C. R., and Ramaker, B. L., 1980, “Dynamic matrix control—A computer control algorithm,” Proceedings JACC, San Francisco.
4.
Clarke
,
D. W.
,
Montadi
,
C.
, and
Tuffs
,
P. S.
,
1987
, “
Generalized predictive control-Part 1, The basic algorithm, Part 2, Extensions and interpretations
,”
Automatica
,
23
,
137
148
.
5.
Clarke
,
D. W.
, and
Mounted
,
C.
,
1989
, “
Properties of generalized predictive control
,”
Automatica
,
25
, No.
6
, pp.
859
875
.
6.
Tomizuka
,
M.
, and
Rosenthal
,
D. E.
, 1979, “On the optimal digital state vector feedback controller with integral and preview actions,” Trans. ASME, 101, pp. 172–178.
7.
Peterka
,
V.
,
1984
, “
Predictor based self-tuning control
,”
Automatica
,
20
, No.
1
, pp.
39
50
.
8.
Bitmead, R. R., Givers, M. and Hertz, V., 1989, Optimal control redesign of generalized predictive control, IFAC Symposium on Adaptive Systems in Control and Signal Processing, Glasgow, Scotland, April.
9.
Ordys
,
A. W.
, and
Clarke
,
D. W.
,
1993
, “
A state-spaced description for GPC controllers
,”
Int. J. Syst. Sci.
,
23
,
1727
1744
.
10.
Ordys, A. W., and Pike, A. W., 1998, State-space generalized predictive control incorporating direct through terms, 37th IEEE Control and Decision Conference, Tampa, Florida.
11.
Prett, D. M., and Garcia, C. E., 1988, Fundamental process control, Butterworth, Stoneham, M.A.
12.
Grimble, M. J., 1995, “Two DOF LQG predictive control,” IEE Proc. 142, No. 4, July, pp. 295–306.
13.
Grimble
,
M. J.
,
1998
, “
Multi step H∞ generalized predictive control
,”
Dyn. Control
,
8
, pp.
303
339
.
14.
Ordys, A. W., and Grimble, M. J., 1996, A multivariable dynamic performance predictive control with application to power generation plants, IFAC World Congress, San Francisco.
15.
Grimble, M. J., and A. W., Ordys, 2000, Predictive control for industrial applications, Plenary at IFAC Conference on Control Systems Design, Bratislava.
16.
Li
,
S.
,
Lim
,
K. Y.
, and
Fisher
,
D. G.
,
1989
, “
A state space formulation for model predictive control
,”
AIChE J.
,
35
,
241
249
.
17.
Marquis, P., and Broustail, J. P., 1988, SMOC, a bridge between state space and model predictive controllers—application to the automation of a hydrotreating unit, IFAC Workshop on Model Based Control, Atlanta, GA.
18.
Ricker
,
N. K.
,
1990
, “
Model predictive control with state estimation
,”
Ind. Eng. Chem. Res.
,
29
,
374
382
.
19.
Grimble
,
M. J.
,
1979
, “
Optimal control of linear systems with crossproduct weighting
,”
Proc. IEE
,
126
, No.
1
, pp.
95
103
.
20.
Anderson, B., and Moore, J., 1971, Linear optimal control, Prentice Hall, Englewood Cliffs.
21.
Grimble, M. J., 2001, Industrial control systems design, Wiley, Chichester, ISBN 0 471 49225 6.
22.
Grimble, M. J., 1994, Robust industrial control, Prentice Hall, Hemel Hempstead (ISBN 3-13-655283-8).
23.
Kalman, R. E., 1961, New methods in Wiener filtering theory, Proc. of the Symposium on Engineering Applications of Random Function Theory and Probability, pp. 270–388.
24.
Grimble
,
M. J.
,
1979
, “
Design of optimal stochastic regulating systems including integral actions
,”
Proc. IEE
,
126
, No.
9
, pp.
841
848
.
You do not currently have access to this content.