Abstract

This paper introduces a hierarchical economic model predictive control (MPC) approach for maximizing the fuel economy of a heavy-duty truck, which simultaneously accounts for aggregate terrain changes that occur over very long length scales, fine terrain changes that occur over shorter length scales, and lead vehicle behavior that can vary over much shorter time/length scales. To accommodate such disparate time and length scales, the proposed approach uses a multilayer MPC approach wherein the upper-level MPC uses a long distance step, a long time-step, and coarse discretization to account for the slower changes in road grade, while the lower-level MPC uses a shorter time-step to account for fine variations in road grade and rapidly changing lead vehicle behavior. The benefit of this multirate, multiscale approach is that the lower-level MPC leverages the upper-level's sufficiently long look-ahead while allowing for safe vehicle following and adjustment to fine road grade variations. The proposed strategy has been evaluated over four real-world road profiles in both open-highway and traffic environments, using a medium-fidelity simulink model furnished by Volvo Group North America. Compared with a conventional cruise control system plus vehicle following controller as a baseline, results show 4–5% fuel savings in an open highway setting and 6–8% fuel savings in the presence of traffic, without compromising trip time.

References

1.
Barradas
,
S.
,
2013
, “
The Real Cost of Trucking—Per Mile Operating Cost of a Commercial Truck
,” The Truckers Report, accessed Oct. 13, 2020, https://www.thetruckersreport.com/infographics/cost-of-trucking/
2.
EPA
,
2017
, “
Fast Facts: U.S. Transportation Sector Greenhouse Gas Emissions
,”
Environment Protection Agency
,
Washington DC
, Standard No. EPA-420-F-17-013.
3.
EPA
,
2016
, “
EPA and NHTSA Adopt Standards to Reduce Greenhouse Gas Emissions and Improve Fuel Efficiency of Medium- and Heavy-Duty Vehicles for Model Year 2018 and Beyond
,”
Environment Protection Agency
,
Washington DC
, Standard No. EPA-420-f-16-044.
4.
Hooker
,
J.
, May
1988
, “
Optimal Driving for Single-Vehicle Fuel Economy
,”
Transport. Res. Part A Policy Pract.
,
22
(
3
), pp.
183
201
.10.1016/0191-2607(88)90036-2
5.
Mensing
,
F.
,
Trigui
,
R.
, and
Bideaux
,
E.
,
2011
, “
Vehicle Trajectory Optimization for Application in Eco-Driving
,”
IEEE Vehicle Power and Propulsion Conference
,
Chicago, IL
, Sept. 6–9, pp.
1
6
.10.1109/VPPC.2011.6042993
6.
Heppeler
,
G.
,
Sonntag
,
M.
, and
Sawodny
,
O.
,
2014
, “
Fuel Efficiency Analysis for Simultaneous Optimization of the Velocity Trajectory and the Energy Management in Hybrid Electric Vehicles
,”
IFAC Proc. Vol.
,
47
(
3
), pp.
6612
6617
.10.3182/20140824-6-ZA-1003.00286
7.
Blondel
,
V.
, and
Tsitsiklis
,
J.
,
2000
, “
A Survey of Computational Complexity Results in Systems and Control
,”
Automatica
,
36
(
9
), pp.
1249
1274
.10.1016/S0005-1098(00)00050-9
8.
Ozatay
,
E.
,
Onori
,
S.
,
Wollaeger
,
J.
,
Ozguner
,
U.
,
Rizzoni
,
G.
,
Filev
,
D.
,
Michelini
,
J.
, and
Cairano
,
S. D.
,
2014
, “
Cloud-Based Velocity Profile Optimization for Everyday Driving: A Dynamic Programming Based Solution
,”
IEEE Trans. Intelligent Transportation Syst.
,
15
(6), pp.
2491
2505
.10.1109/TITS.2014.2319812
9.
Levermore
,
T.
,
Sahinkaya
,
M.
,
Zweiri
,
Y.
, and
Neaves
,
B.
,
2016
, “
Real-Time Velocity Optimization to Minimize Energy Use in Passenger Vehicles
,”
Energies
,
10
(
1
), p.
30
.10.3390/en10010030
10.
Hellström
,
E.
,
Ivarsson
,
M.
,
Aslund
,
J.
, and
Nielsen
,
L.
,
2009
, “
Look-Ahead Control for Heavy Trucks to Minimize Trip Time and Fuel Consumption
,”
Control Eng. Pract.
,
17
(
2
), pp.
245
254
.10.1016/j.conengprac.2008.07.005
11.
Huang
,
W.
,
Bevly
,
D. M.
,
Schnick
,
S.
, and
Li
,
X.
,
2008
, “
Using 3D Road Geometry to Optimize Heavy Truck Fuel Efficiency
,”
11th International IEEE Conference on Intelligent Transportation Systems
,
Beijing, China
, Oct. 12–15, pp.
334
339
.10.1109/ITSC.2008.4732656
12.
Hummel
,
T.
,
Kühn
,
M.
,
Bende
,
J.
, and
Lang
,
A.
,
2011
, “
Advanced Driver Assistance Systems
,”
German Insurance Assoc. Insurers Accident Research, Research Report No. FS03
.
13.
Luo
,
L.
,
Liu
,
H.
,
Li
,
P.
, and
Wang
,
H.
,
2010
, “
Model Predictive Control for Adaptive Cruise Control With Multi-Objectives: Comfort, Fuel-Economy, Safety and Car-Following
,”
J. Zhejiang Univ. Sci.
,
11
(
3
), pp.
191
201
.10.1631/jzus.A0900374
14.
Li
,
S.
,
Li
,
K.
,
Rajamani
,
R.
, and
Wang
,
J.
, May
2011
, “
Model Predictive Multi-Objective Vehicular Adaptive Cruise Control
,”
IEEE Trans. Control Syst. Technol.
,
19
(
3
), pp.
556
566
.10.1109/TCST.2010.2049203
15.
Stanger
,
T.
, and
del Re
,
L.
,
2013
, “
A Model Predictive Cooperative Adaptive Cruise Control Approach
,”
2013 American Control Conference
,
Washington, DC
, June 17–19, pp.
1374
1379
.10.1109/ACC.2013.6580028
16.
Bertoni
,
L.
,
Guanetti
,
J.
,
Basso
,
M.
,
Masoero
,
M.
,
Cetinkunt
,
S.
, and
Borrelli
,
F.
,
2017
, “
An Adaptive Cruise Control for Connected Energy-Saving Electric Vehicles
,”
IFAC-PapersOnLine
,
50
(
1
), pp.
2359
2364
.10.1016/j.ifacol.2017.08.425
17.
Groelke
,
B.
,
Borek
,
J.
,
Earnhardt
,
C.
,
Li
,
J.
,
Geyer
,
S.
, and
Vermillion
,
C.
,
2018
, “
A Comparative Assessment of Economic Model Predictive Control Strategies for Fuel Optimization for Heavy-Duty Trucks
,”
American Control Conference
,
Milwaukee, WI
, June 27–29, pp.
834
839
.10.23919/ACC.2018.8431050
18.
Weißmann
,
A.
,
Görges
,
D.
, and
Lin
,
X.
,
2018
, “
Energy-Optimal Adaptive Cruise Control Combining Model Predictive Control and Dynamic Programming
,”
Control Eng. Practice
,
72
, pp.
125
137
.10.1016/j.conengprac.2017.12.001
19.
Borek
,
J.
,
Goelke
,
B.
,
Earnhardt
,
C.
, and
Vermillion
,
C.
,
2019
, “
Economic Optimal Control for Minimizing Fuel Consumption of Heavy-Duty Trucks in a Highway Environment
,”
IEEE Trans. Control Syst. Technol.
,
28
(
5
), pp.
1652
1664
.10.1109/TCST.2019.2918472
20.
Earnhardt
,
C.
,
Groelke
,
B.
,
Borek
,
J.
,
Geyer
,
S.
, and
Vermillion
,
C.
,
2018
, “
Fused Global-Local Economic Model Predictive Control for Real-Time Eco-Optimal Control of a Heavy Duty Truck
,”
14th International Symposium on Advanced Vehicle Control
,
Beijing, China
, July 16–20, Paper No. AVEC-S1-062.
21.
Rajamani
,
R.
,
2012
,
Vehicle Dynamics and Control
,
Springer US
,
Boston, MA
, pp.
87
111
.
22.
Henzler
,
M.
,
Buchholz
,
M.
, and
Dietmayer
,
K.
,
2014
, “
Online Velocity Trajectory Planning for Manual Energy Efficient Driving of Heavy Duty Vehicles Using Model Predictive Control
,”
17th International IEEE Conference on Intelligent Transportation Systems (ITSC)
,
Qingdao, China
, Oct. 8–11, pp.
1814
1819
.10.1109/ITSC.2014.6957956
23.
Mussa
,
R. N.
,
2004
, “
Speeds on Rural Interstate Highways Relative to Posting the 40 Mph Minimum Speed Limit
,”
J. Transp. Stat.
,
7
(
2–3
), p.
71
. https://www.bts.gov/archive/publications/journal_of_transportation_and_statistics/volume_07_number_23/paper_06/index
24.
Gipps
,
P.
,
1981
, “
A Behavioural Car-Following Model for Computer Simulation
,”
Transp. Res. Part B: Methodol.
,
15
(
2
), pp.
105
111
.10.1016/0191-2615(81)90037-0
25.
Wei
,
X.
,
Pisu
,
P.
,
Rizzoni
,
G.
, and
Yurkovich
,
S.
,
2003
, “
Dynamic Modeling of a Hybrid Electric Drivetrain for Fuel Economy, Performance and Driveability Evaluations
,”
ASME Paper No. IMECE2003
.10.1115/IMECE2003
You do not currently have access to this content.