Abstract

Electric vehicles (EVs) have emerged as a promising solution to address environmental concerns, especially benefiting urban delivery and last-mile fleets due to their unique operational characteristics. Despite the potential advantages, the adoption of electric trucks (eTrucks) into delivery fleets has been slow, mainly due to the challenge posed by eTrucks' limited driving range. Consequently, a reliable method for predicting the eTrucks' energy consumption in fleet route planning is essential, and the accuracy of the velocity trajectory forecast forming the fundamental basis. This paper introduces a data-driven approach to predict the velocity and energy consumption of medium-duty (MD) eTrucks, considering various road features, payload, and traffic conditions. A gated recurrent unit (GRU) is trained using traffic-labeled characteristic features specific to each road segment within a delivery route. For every predefined route, the GRU generates the velocity profile by analyzing a sequence of traffic states predicted from the maximum entropy Markov model (MEMM). Corresponding eTruck energy consumption is estimated using an autonomie truck model. Real-world EV data are used to evaluate the proposed method, and the results demonstrate that the model effectively utilizes the information, achieving high accuracy in predicting both eTruck velocity and energy consumption.

References

1.
Liimatainen
,
H.
,
van Vliet
,
O.
, and
Aplyn
,
D.
,
2019
, “
The Potential of Electric Trucks—An International Commodity-Level Analysis
,”
Appl. Energy
,
236
, pp.
804
814
.10.1016/j.apenergy.2018.12.017
2.
Lee
,
D.-Y.
,
Thomas
,
V. M.
, and
Brown
,
M. A.
,
2013
, “
Electric Urban Delivery Trucks: Energy Use, Greenhouse Gas Emissions, and Cost-Effectiveness
,”
Environ. Sci. Technol.
,
47
(
14
), pp.
8022
8030
.10.1021/es400179w
3.
Eisel
,
M.
,
Nastjuk
,
I.
, and
Kolbe
,
L. M.
,
2016
, “
Understanding the Influence of In-Vehicle Information Systems on Range Stress—Insights From an Electric Vehicle Field Experiment
,”
Transp. Res. F: Traffic Psychol. Behav.
,
43
, pp.
199
211
.10.1016/j.trf.2016.10.015
4.
Cuma
,
M. U.
, and
Koroglu
,
T.
,
2015
, “
A Comprehensive Review on Estimation Strategies Used in Hybrid and Battery Electric Vehicles
,”
Renewable Sustainable Energy Rev.
,
42
, pp.
517
531
.10.1016/j.rser.2014.10.047
5.
Ahn
,
H.
,
Wang
,
Z.
,
Shen
,
H.
,
Zhou
,
X.
, and
Wang
,
J.
,
2022
, “
A Two-Stage Genetic Algorithm for Battery Sizing and Route Optimization of Medium-Duty Electric Delivery Fleets
,”
IFAC-PapersOnLine
,
55
(
37
), pp.
50
55
.10.1016/j.ifacol.2022.11.160
6.
Shen
,
H.
,
Zhou
,
X.
,
Wang
,
Z.
,
Ahn
,
H.
,
Lamantia
,
M.
,
Chen
,
P.
, and
Wang
,
J.
,
2022
, “
Electric Vehicle Energy Consumption Estimation With Consideration of Longitudinal Slip Ratio and Machine-Learning-Based Powertrain Efficiency
,”
IFAC-PapersOnLine
,
55
(
37
), pp.
158
163
.10.1016/j.ifacol.2022.11.177
7.
Li
,
Y.
,
Zhang
,
J.
,
Ren
,
C.
, and
Lu
,
X.
,
2020
, “
Prediction of Vehicle Energy Consumption on a Planned Route Based on Speed Features Forecasting
,”
IET Intell. Transp. Syst.
,
14
(
6
), pp.
511
522
.10.1049/iet-its.2019.0538
8.
Hegde
,
B.
,
Ahmed
,
Q.
, and
Rizzoni
,
G.
,
2020
, “
Velocity and Energy Trajectory Prediction of Electrified Powertrain for Look Ahead Control
,”
Appl. Energy
,
279
, p.
115903
.10.1016/j.apenergy.2020.115903
9.
Li
,
P.
,
Zhang
,
Y.
,
Zhang
,
Y.
,
Zhang
,
Y.
, and
Zhang
,
K.
,
2021
, “
Prediction of Electric Bus Energy Consumption With Stochastic Speed Profile Generation Modelling and Data Driven Method Based on Real-World Big Data
,”
Appl. Energy
,
298
, p.
117204
.10.1016/j.apenergy.2021.117204
10.
Shen
,
H.
,
Wang
,
Z.
,
Zhou
,
X.
,
Lamantia
,
M.
,
Yang
,
K.
,
Chen
,
P.
, and
Wang
,
J.
,
2022
, “
Electric Vehicle Velocity and Energy Consumption Predictions Using Transformer and Markov-Chain Monte Carlo
,”
IEEE Trans. Transp. Electrif.
,
8
(
3
), pp.
3836
3847
.10.1109/TTE.2022.3157652
11.
Zhou
,
W.
,
Yang
,
L.
,
Ying
,
T.
,
Yuan
,
J.
, and
Yang
,
Y.
,
2019
, “
Velocity Prediction of Intelligent and Connected Vehicles for a Traffic Light Distance on the Urban Road
,”
IEEE Trans. Intell. Transp. Syst.
,
20
(
11
), pp.
4119
4133
.10.1109/TITS.2018.2882609
12.
Rhode
,
S.
,
Van Vaerenbergh
,
S.
, and
Pfriem
,
M.
,
2020
, “
Power Prediction for Electric Vehicles Using Online Machine Learning
,”
Eng. Appl. Artif. Intell.
,
87
, p.
103278
.10.1016/j.engappai.2019.103278
13.
Yavasoglu
,
H.
,
Tetik
,
Y.
, and
Gokce
,
K.
,
2019
, “
Implementation of Machine Learning Based Real Time Range Estimation Method Without Destination Knowledge for BEVs
,”
Energy
,
172
, pp.
1179
1186
.10.1016/j.energy.2019.02.032
14.
Li
,
Y.
,
Chen
,
M.
, and
Zhao
,
W.
,
2019
, “
Investigating Long-Term Vehicle Speed Prediction Based on BP-LSTM Algorithms
,”
IET Intell. Transp. Syst.
,
13
(
8
), pp.
1281
1290
.10.1049/iet-its.2018.5593
15.
Amini
,
M. R.
,
Feng
,
Y.
,
Yang
,
Z.
,
Kolmanovsky
,
I.
, and
Sun
,
J.
,
2020
, “
Long-Term Vehicle Speed Prediction Via Historical Traffic Data Analysis for Improved Energy Efficiency of Connected Electric Vehicles
,”
Transp. Res. Rec.
,
2674
(
11
), pp.
17
29
.10.1177/0361198120941508
16.
Montazeri-Gh
,
M.
, and
Fotouhi
,
A.
,
2011
, “
Traffic Condition Recognition Using the K-Means Clustering Method
,”
Sci. Iran.
,
18
(
4
), pp.
930
937
.10.1016/j.scient.2011.07.004
17.
Lu
,
J.
,
Nie
,
Q.
,
Wang
,
Y.
,
Xia
,
J.
,
Lu
,
Z.
, and
Ou
,
J.
,
2023
, “
Reliable Traffic State Identification Using High-Resolution Data: A Consistent Offline-Online Dynamic Time Warping-Based Time Series Clustering Approach
,”
Transp. Res. Rec.
,
2677
(
8
), pp.
509
524
.10.1177/03611981231156916
18.
Rao
,
W.
,
Xia
,
J.
,
Lyu
,
W.
, and
Lu
,
Z.
,
2019
, “
Interval Data-Based K-Means Clustering Method for Traffic State Identification at Urban Intersections
,”
IET Intell. Transp. Syst.
,
13
(
7
), pp.
1106
1115
.10.1049/iet-its.2018.5379
19.
Azimi
,
M.
, and
Zhang
,
Y.
,
2010
, “
Categorizing Freeway Flow Conditions by Using Clustering Methods
,”
Transp. Res. Rec.
,
2173
(
1
), pp.
105
114
.10.3141/2173-13
20.
Lin
,
X.
,
2019
, “
A Road Network Traffic State Identification Method Based on Macroscopic Fundamental Diagram and Spectral Clustering and Support Vector Machine
,”
Math. Probl. Eng.
,
2019
, pp.
1
10
.10.1155/2019/6571237
21.
Yang
,
S.
,
Wu
,
J.
,
Qi
,
G.
, and
Tian
,
K.
,
2017
, “
Analysis of Traffic State Variation Patterns for Urban Road Network Based on Spectral Clustering
,”
Adv. Mech. Eng.
,
9
(
9
), p.
168781401772379
.10.1177/1687814017723790
22.
Li
,
F.
,
Gong
,
J.
,
Liang
,
Y.
, and
Zhou
,
J.
,
2016
, “
Real-Time Congestion Prediction for Urban Arterials Using Adaptive Data-Driven Methods
,”
Multimedia Tools Appl.
,
75
(
24
), pp.
17573
17592
.10.1007/s11042-016-3474-3
23.
Diker
,
A. C.
, and
Nasibov
,
E.
,
2012
, “
Estimation of Traffic Congestion Level Via FN-DBSCAN Algorithm by Using GPS Data
,”
2012 IV International Conference Problems of Cybernetics and Informatics (PCI)
, Baku, Azerbaijan, Sept. 12–14, pp.
1
4
.10.1109/ICPCI.2012.6486279
24.
Akhtar
,
M.
, and
Moridpour
,
S.
,
2021
, “
A Review of Traffic Congestion Prediction Using Artificial Intelligence
,”
J. Adv. Transp.
,
2021
, pp.
1
18
.10.1155/2021/8878011
25.
Park
,
B.
,
2002
, “
Hybrid Neuro-Fuzzy Application in Short-Term Freeway Traffic Volume Forecasting
,”
Transp. Res. Rec.
,
1802
(
1
), pp.
190
196
.10.3141/1802-21
26.
Yuan
,
Y.
,
Zhang
,
W.
,
Yang
,
X.
,
Liu
,
Y.
,
Liu
,
Z.
, and
Wang
,
W.
,
2021
, “
Traffic State Classification and Prediction Based on Trajectory Data
,”
J. Intell. Transp. Syst.
, pp.
1
15
.10.1080/15472450.2021.1955210
27.
Liu
,
J.
,
Wang
,
X.
,
Li
,
Y.
,
Kang
,
X.
, and
Gao
,
L.
,
2021
, “
Method of Evaluating and Predicting Traffic State of Highway Network Based on Deep Learning
,”
J. Adv. Transp.
,
2021
, pp.
1
9
.10.1155/2021/8878494
28.
Kumar
,
S. V.
, and
Vanajakshi
,
L.
,
2015
, “
Short-Term Traffic Flow Prediction Using Seasonal ARIMA Model With Limited Input Data
,”
Eur. Transp. Res. Rev.
,
7
(
3
), pp.
1
9
.10.1007/s12544-015-0170-8
29.
Xia
,
J.
,
Chen
,
M.
, and
Huang
,
W.
,
2011
, “
A Multistep Corridor Travel-Time Prediction Method Using Presence-Type Vehicle Detector Data
,”
J. Intell. Transp. Syst.
,
15
(
2
), pp.
104
113
.10.1080/15472450.2011.570114
30.
Guo
,
J.
,
Huang
,
W.
, and
Williams
,
B. M.
,
2014
, “
Adaptive Kalman Filter Approach for Stochastic Short-Term Traffic Flow Rate Prediction and Uncertainty Quantification
,”
Transp. Res. Part C: Emerging Technol.
,
43
, pp.
50
64
.10.1016/j.trc.2014.02.006
31.
Qi
,
Y.
, and
Ishak
,
S.
,
2014
, “
A Hidden Markov Model for Short Term Prediction of Traffic Conditions on Freeways
,”
Transp. Res. Part C: Emerging Technol.
,
43
, pp.
95
111
.10.1016/j.trc.2014.02.007
32.
Zaki
,
J. F.
,
Ali-Eldin
,
A.
,
Hussein
,
S. E.
,
Saraya
,
S. F.
, and
Areed
,
F. F.
,
2020
, “
Traffic Congestion Prediction Based on Hidden Markov Models and Contrast Measure
,”
Ain Shams Eng. J.
,
11
(
3
), pp.
535
551
.10.1016/j.asej.2019.10.006
33.
Zeng
,
X.
, and
Wang
,
J.
,
2018
, “
Globally Energy-Optimal Speed Planning for Road Vehicles on a Given Route
,”
Transp. Res. Part C: Emerging Technol.
,
93
, pp.
148
160
.10.1016/j.trc.2018.05.027
34.
Texas Department of Transportation
,
2020
, “
TxDOT Speed Limits
,” Texas Department of Transportation, Austin, TX, accessed Nov. 13, 2022, https://gis-txdot.opendata.arcgis.com/datasets/TXDOT::txdot-speed-limits
35.
City of Austin Transportation Department
,
2022
, “
Transportation Signals
,” accessed Jan. 28, 2023, https://services.arcgis.com/0L95CJ0VTaxqcmED/ArcGIS/rest/services/TRANSPORTATION_signals2/FeatureServer
36.
García-Ródenas
,
R.
,
López-García
,
M. L.
, and
Sánchez-Rico
,
M. T.
,
2017
, “
An Approach to Dynamical Classification of Daily Traffic Patterns
,”
Comput.-Aided Civ. Infrastruct. Eng.
,
32
(
3
), pp.
191
212
.10.1111/mice.12226
37.
Manual
,
H. C.
,
2010
, “
HCM2d10
,”
Transportation Research Board
,
National Research Council
,
Washington, DC
.https://www.sciencedirect.com/topics/engineering/highway-capacity-manual
38.
Cheng
,
Z.
,
Wang
,
W.
,
Lu
,
J.
, and
Xing
,
X.
,
2020
, “
Classifying the Traffic State of Urban Expressways: A Machine-Learning Approach
,”
Transp. Res. Part A: Policy Pract.
,
137
, pp.
411
428
.10.1016/j.tra.2018.10.035
39.
Shang
,
Q.
,
Yu
,
Y.
, and
Xie
,
T.
,
2022
, “
A Hybrid Method for Traffic State Classification Using K-Medoids Clustering and Self-Tuning Spectral Clustering
,”
Sustainability
,
14
(
17
), p.
11068
.10.3390/su141711068
40.
Zeng
,
X.
, and
Wang
,
J.
,
2016
, “
A Two-Level Stochastic Approach to Optimize the Energy Management Strategy for Fixed-Route Hybrid Electric Vehicles
,”
Mechatronics
,
38
, pp.
93
102
.10.1016/j.mechatronics.2015.11.011
41.
Wei
,
H.
,
He
,
C.
,
Li
,
J.
, and
Zhao
,
L.
,
2022
, “
Online Estimation of Driving Range for Battery Electric Vehicles Based on SOC-Segmented Actual Driving Cycle
,”
J. Energy Storage
,
49
, p.
104091
.10.1016/j.est.2022.104091
42.
Boggio-Marzet
,
A.
,
Monzon
,
A.
,
Rodriguez-Alloza
,
A. M.
, and
Wang
,
Y.
,
2022
, “
Combined Influence of Traffic Conditions, Driving Behavior, and Type of Road on Fuel Consumption. Real Driving Data From Madrid Area
,”
Int. J. Sustainable Transp.
,
16
(
4
), pp.
301
313
.10.1080/15568318.2020.1871128
43.
Shen
,
H.
,
Zhou
,
X.
,
Ahn
,
H.
,
Lamantia
,
M.
,
Chen
,
P.
, and
Wang
,
J.
,
2023
, “
Personalized Velocity and Energy Prediction for Electric Vehicles With Road Features in Consideration
,”
IEEE Trans. Transp. Electrif.
,
9
(
3
), pp.
3958
3969
.10.1109/TTE.2023.3241098
44.
Ahn
,
H.
,
Zhou
,
X.
,
Shen
,
H.
,
Kung
,
Y.-C.
, and
Wang
,
J.
,
2023
, “
Remaining Driving Range Estimation of Medium-Duty Electric Trucks During Delivery
,” 2023 IEEE International Automated Vehicle Validation Conference (
IAVVC
), Austin, TX, Oct. 16–18, pp.
1
6
.10.1109/IAVVC57316.2023.10328131
45.
North Central Texas Council of Governments
,
2020
, “
Traffic Count Information Systems
,”
North Central Texas Council of Governments
,
Arlington, TX
, accessed Mar. 22, 2023, https://www.nctcog.org/trans/data/info/traffic-count-information-systems
You do not currently have access to this content.