Graphical Abstract Figure

An illustration of the Parameter-Dependent-Maximal Admissible Set.

Graphical Abstract Figure

An illustration of the Parameter-Dependent-Maximal Admissible Set.

Close modal

Abstract

Real-time constraint management schemes for time-varying or parameter-varying systems often result in conservative (slow) responses or carry a heavy computational burden. This makes some of the existing solutions less suitable for practical applications within these systems. To address this issue, this paper proposes a numerically efficient reference governor (RG) scheme for constraint management of systems with slowly time-varying parameters and constraints. The solution, which we call the adaptive-contractive reference governor (RG-AC), utilizes a contractive, parameterized characterization of the so-called maximal admissible set (MAS). To ensure low computational overhead, this parameter-dependent MAS (PD-MAS) is approximated using a sensitivity-based method that describes the changes in the facets of PD-MAS as a function of the system parameters around a nominal operating point. The computational and theoretical properties of the PD-MAS and RG-AC are presented. The effectiveness and limitations of the proposed method are demonstrated by studying a basic mass–spring–damper system.

References

1.
Marian Maciejowski
,
J.
,
2008
,
Predictive Control: With Constraints
,
Prentice Hall
,
Essex, UK
.
2.
Camacho
,
E. F.
, and
Bordons Alba
,
C.
,
2013
,
Model Predictive Control
,
Springer Science & Business Media
,
Berlin, Germany
.
3.
Goodwin
,
G.
,
Seron
,
M. M.
, and
De Doná
,
J. A.
,
2006
,
Constrained Control and Estimation: An Optimisation Approach
,
Springer Science & Business Media
,
Berlin, Germany
.
4.
Kwon
,
W. H.
, and
Han
,
S. H.
,
2006
,
Receding Horizon Control: Model Predictive Control for State Models
,
Springer Science & Business Media
,
Berlin, Germany
.
5.
Morari
,
M.
, and
Lee
,
J. H.
,
1999
, “
Model Predictive Control: Past, Present and Future
,”
Comput. Chem. Eng.
,
23
(
4–5
), pp.
667
682
.10.1016/S0098-1354(98)00301-9
6.
Mayne
,
D. Q.
,
Rawlings
,
J. B.
,
Rao
,
C. V.
, and
Scokaert
,
P. O. M.
,
2000
, “
Constrained Model Predictive Control: Stability and Optimality
,”
Automatica
,
36
(
6
), pp.
789
814
.10.1016/S0005-1098(99)00214-9
7.
Wang
,
Y.
, and
Boyd
,
S.
,
2010
, “
Fast Model Predictive Control Using Online Optimization
,”
IEEE Trans. Control Syst. Technol.
,
18
(
2
), pp.
267
278
.10.1109/TCST.2009.2017934
8.
Peng Tee
,
K.
,
Sam Ge
,
S.
, and
Tay
,
E. H.
,
2009
, “
Barrier Lyapunov Functions for the Control of Output-Constrained Nonlinear Systems
,”
Automatica
,
45
(
4
), pp.
918
927
.10.1016/j.automatica.2008.11.017
9.
Romdlony
,
M. Z.
, and
Jayawardhana
,
B.
,
2016
, “
Stabilization With Guaranteed Safety Using Control Lyapunov–Barrier Function
,”
Automatica
,
66
, pp.
39
47
.10.1016/j.automatica.2015.12.011
10.
Peng Tee
,
K.
, and
Sam Ge
,
S.
,
2011
, “
Control of Nonlinear Systems With Partial State Constraints Using a Barrier Lyapunov Function
,”
Int. J. Control
,
84
(
12
), pp.
2008
2023
.10.1080/00207179.2011.631192
11.
Kolmanovsky
,
I.
,
Garone
,
E.
, and
Di Cairano
,
S.
,
2014
, “
Reference and Command Governors: A Tutorial on Their Theory and Automotive Applications
,”
2014 American Control Conference
, Portland, OR, June 4–6, pp.
226
241
.10.1109/ACC.2014.6859176
12.
Gilbert
,
E. G.
, and
Kolmanovsky
,
I.
,
1995
, “
Discrete-Time Reference Governors for Systems With State and Control Constraints and Disturbance Inputs
,”
Proceedings of 1995 34th IEEE Conference on Decision and Control
, New Orleans, LA, Dec. 13–15, pp.
1189
1194
.10.1109/CDC.1995.480258
13.
Garone
,
E.
,
Di Cairano
,
S.
, and
Kolmanovsky
,
I.
,
2017
, “
Reference and Command Governors for Systems With Constraints: A Survey on Theory and Applications
,”
Automatica
,
75
, pp.
306
328
.10.1016/j.automatica.2016.08.013
14.
Gilbert
,
E. G.
, and
Kolmanovsky
,
I.
,
1999
, “
Fast Reference Governors for Systems With State and Control Constraints and Disturbance Inputs
,”
Int. J. Robust Nonlinear Control
,
9
(
15
), pp.
1117
1141
.10.1002/(SICI)1099-1239(19991230)9:15<1117::AID-RNC447>3.0.CO;2-I
15.
Kolmanovsky
,
I.
, and
Gilbert
,
E. G.
,
1995
, “
Maximal Output Admissible Sets for Discrete-Time Systems With Disturbance Inputs
,” Proceedings of 1995 American Control Conference (
ACC
), Seattle, WA, June 21–23, pp.
1995
1999
.10.1109/ACC.1995.531239
16.
Liu
,
Y.
,
Pedari
,
Y.
, and
Ossareh
,
H. R.
,
2022
, “
Constraint Management for Quadcopter Drones: Reference Governor-Based Approaches
,” 2022 American Control Conference (
ACC
), Atlanta, GA, June 8–10, pp.
4042
4049
.10.23919/ACC53348.2022.9867686
17.
Bemporad
,
A.
,
1998
, “
Reference Governor for Constrained Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
43
(
3
), pp.
415
419
.10.1109/9.661611
18.
Ossareh
,
H. R.
,
2020
, “
Reference Governors and Maximal Output Admissible Sets for Linear Periodic Systems
,”
Int. J. Control
,
93
(
1
), pp.
113
125
.10.1080/00207179.2019.1658899
19.
Osorio
,
J.
, and
Ossareh
,
H. R.
,
2018
, “
A Stochastic Approach to Maximal Output Admissible Sets and Reference Governors
,” 2018 IEEE Conference on Control Technology and Applications (
CCTA
), Copenhagen, Denmark, Aug. 21–24, pp.
704
709
.10.1109/CCTA.2018.8511439
20.
Laracy
,
A.
, and
Ossareh
,
H.
,
2020
, “
Constraint Management for Batch Processes Using Iterative Learning Control and Reference Governors
,” Proceedings of Machine Learning Research (
PMLR
), Virtual Event, June 10–11, Vol. 120, pp.
340
349
.https://proceedings.mlr.press/v120/laracy20a/laracy20a.pdf
21.
Osorio
,
J.
,
Santillo
,
M.
,
Seeds
,
J. B.
,
Jankovic
,
M.
, and
Ossareh
,
H. R.
,
2019
, “
A Reference Governor Approach Towards Recovery From Constraint Violation
,” 2019 American Control Conference (
ACC
), Philadelphia, PA, July 10–12, pp.
1779
1785
.10.23919/ACC.2019.8815337
22.
Liu
,
Y.
,
Osorio
,
J.
, and
Ossareh
,
H.
,
2018
, “
Decoupled Reference Governors for Multi-Input Multi-Output Systems
,” 2018 IEEE Conference on Decision and Control (
CDC
), Miami, FL, Dec. 17–19, pp.
1839
1846
.10.1109/CDC.2018.8619592
23.
Pedari
,
Y.
,
Liu
,
Y.
, and
Ossareh
,
H. R.
,
2022
, “
High-Performance Reference Governors for Faster Constraint Management
,” 2022 IEEE Conference on Control Technology and Applications (
CCTA
), Trieste, Italy, Aug. 23–25, pp.
554
561
.10.1109/CCTA49430.2022.9966106
24.
Gilbert
,
E. G.
, and
Tan
,
K. T.
,
1991
, “
Linear Systems With State and Control Constraints: The Theory and Application of Maximal Output Admissible Sets
,”
IEEE Trans. Autom. Control
,
36
(
9
), pp.
1008
1020
.10.1109/9.83532
25.
Osorio
,
J.
,
2020
, “
Reference Governors: From Theory to Practice
,”
Ph.D. thesis
,
University of Vermont
,
Burlington, VT
.https://scholarworks.uvm.edu/cgi/viewcontent.cgi?article=2289&context=graddis
26.
Pluymers
,
B.
,
Rossiter
,
J. A.
,
Suykens
,
J. A. K.
, and
De Moor
,
B.
,
2005
, “
The Efficient Computation of Polyhedral Invariant Sets for Linear Systems With Polytopic Uncertainty
,” 2005 American Control Conference (
ACC
), Portland, OR, June 8–10, pp.
804
809
.10.1109/ACC.2005.1470058
27.
Sun
,
J.
, and
Kolmanovsky
,
I. V.
,
2005
, “
Load Governor for Fuel Cell Oxygen Starvation Protection: A Robust Nonlinear Reference Governor Approach
,”
IEEE Trans. Control Syst. Technol.
,
13
(
6
), pp.
911
920
.10.1109/TCST.2005.854323
28.
Kalabić
,
U.
, and
Kolmanovsky
,
I.
,
2014
, “
Reference and Command Governors for Systems With Slowly Time-Varying References and Time-Dependent Constraints
,”
53rd IEEE Conference on Decision and Control
, Los Angeles, CA, Dec. 15–17, pp.
6701
6706
.10.1109/CDC.2014.7040441
29.
Freiheit
,
C.
,
2020
, “
Reference Governors for Time-Varying Systems and Constraints
,”
Master's thesis
,
University of Vermont
,
Burlington, VT
.https://scholarworks.uvm.edu/cgi/viewcontent.cgi?article=2302&context=graddis
30.
Chakrabarty
,
A.
,
Berntorp
,
K.
, and
Di Cairano
,
S.
,
2020
, “
Learning-Based Parameter-Adaptive Reference Governors
,” 2020 American Control Conference (
ACC
),
Denver, CO, July 1–3
, pp.
956
961
.10.23919/ACC45564.2020.9147615
31.
Vanderbei
,
R. J.
,
2014
,
Linear Programming Foundations and Extensions
, 4th ed.,
Springer
, Berlin, Germany.
32.
Martin
,
D. H.
,
1975
, “
On the Continuity of the Maximum in Parametric Linear Programming
,”
J. Optim. Theory Appl.
,
17
(
3–4
), pp.
205
210
.10.1007/BF00933875
33.
Rockafellar
,
R.
,
1966
, “
Characterization of the Subdifferentials of Convex Functions
,”
Pac. J. Math.
,
17
(
3
), pp.
497
510
.10.2140/pjm.1966.17.497
34.
Calvo
,
J. A.
,
López-Boada
,
B.
,
Román
,
J. L. S.
, and
Gauchía
,
A.
,
2009
, “
Influence of a Shock Absorber Model on Vehicle Dynamic Simulation
,”
Proc. Inst. Mech. Eng., Part D: J. Automob. Eng.
,
223
(
2
), pp.
189
203
.10.1243/09544070JAUTO990
35.
Garcia Gracia
,
A.
,
Jimenez
,
F.
,
Paez
,
J.
, and
Narvaez
,
A.
,
2006
, “
Theoretical and Experimental Analysis to Determine the Influence of the Ageing Process of the Shock-Absorber on Safety
,”
Int. J. Veh. Des.
,
40
(
1/2/3
), pp.
15
35
.10.1504/IJVD.2006.008451
36.
Pavlov
,
N.
,
2017
, “
Influence of Shock Absorber Temperature on Vehicle Ride Comfort and Road Holding
,”
MATEC Web Conf.
,
133
, p.
02006
.10.1051/matecconf/201713302006
37.
Liu
,
Y.
,
Osorio
,
J.
, and
Ossareh
,
H. R.
,
2022
, “
Decoupled Reference Governors: A Constraint Management Technique for MIMO Systems
,”
Int. J. Control
,
95
(
11
), pp.
3050
3069
.10.1080/00207179.2021.1951845
You do not currently have access to this content.