Abstract

As the main power source for electric vehicles, lithium-ion power batteries have always been the focus of public safety. Lithium-ion batteries may occur thermal runaway after internal short circuit caused by mechanical abuse. It is extremely important to study the influencing factors of thermal runaway. In this article, the quasi-static battery extrusion test is used to study the changes of load, voltage, and temperature during the short circuit process of lithium-ion batteries and to observe the influencing factors that may cause thermal runaway. The electrochemical–electrical–thermal multi-physics coupling model was established by comsol multi-physics simulation software to simulate the thermal behavior of the battery after short circuit. The effects of short circuit cases, state of charge (SOC), and voltage maintenance time after short circuit on the thermal runaway of the battery are studied. By comparing the experimental results, the short circuit case of the battery caused by mechanical abuse is judged. The research results have played a certain reference role in the future research on battery mechanical abuse and internal short circuit.

References

1.
Lin
,
C.
,
Xu
,
S.
, and
Li
,
Z.
,
2015
, “
Thermal Analysis of Large-Capacity LiFePO4 Power Batteries for Electric Vehicles
,”
J. Power Sources
,
294
, pp.
633
642
. 10.1016/j.jpowsour.2015.06.129
2.
Wang
,
Z.
,
Yang
,
H.
, and
Li
,
Y.
,
2019
, “
Thermal Runaway and Fire Behaviors of Large-Scale Lithium Ion Batteries With Different Heating Methods
,”
J. Hazard. Mater.
,
379
, pp.
1
8
. 10.1016/j.jhazmat.2019.06.007
3.
Xian
,
X.
,
Dong
,
H.
, and
Zhang
,
S.
,
2020
, “
Thermal Runaway and Fire Characteristics of NCM Lithium-Ion Power Battery
,”
Energy Storage Sci. Technol.
,
1
(
9
), pp.
239
248
. 10.12028/j.issn.2095-4239.2019.0157
4.
Wang
,
Q.
,
Sun
,
J.
, and
Chu
,
G.
,
2005
, “
Lithium Ion Battery Fire and Explosion
,”
Fire Safety Sci.
,
8
, pp.
375
382
. 10.3801/IAFSS.FSS.8-375
5.
Wang
,
Q.
,
Ping
,
P.
, and
Zhao
,
X.
,
2012
, “
Thermal Runaway Caused Fire and Explosion of Lithium Ion Battery
,”
J. Power Sources
,
24
(
208
), pp.
210
224
. 10.1016/j.jpowsour.2012.02.038
6.
Ouyang
,
M.
,
Feng
,
X.
, and
Han
,
X.
,
2016
, “
A Dynamic Capacity Degradation Model and Its Applications Considering Varying Load for a Large Format Li-Ion Battery
,”
Appl. Energy
,
165
, pp.
48
59
. 10.1016/j.apenergy.2015.12.063
7.
Wierzbicki
,
T.
, and
Sahraei
,
E.
,
2013
, “
Homogenized Mechanical Properties for the Jellyroll of Cylindrical Lithium-Ion Cells
,”
J. Power Sources
,
241
, pp.
467
476
. 10.1016/j.jpowsour.2013.04.135
8.
Greve
,
L.
, and
Fehrenbach
,
C.
,
2012
, “
Mechanical Testing and Macro-Mechanical Finite Element Simulation of the Deformation, Fracture, and Short Circuit Initiation of Cylindrical Lithium Ion Battery Cells
,”
J. Power Sources
,
214
, pp.
377
385
. 10.1016/j.jpowsour.2012.04.055
9.
Ping
,
P.
,
Wang
,
Q.
, and
Huang
,
P.
,
2015
, “
Study of the Fire Behavior of High-Energy Lithium-Ion Batteries With Full-Scale Burning Test
,”
J. Power Sources
,
285
, pp.
80
89
. 10.1016/j.jpowsour.2015.03.035
10.
Santhanagopalan
,
S.
,
Ramadass
,
P.
, and
Zhang
,
J. Z.
,
2009
, “
Analysis of Internal Short-Circuit in a Lithium Ion Cell
,”
J. Power Sources
,
194
(
1
), pp.
550
557
. 10.1016/j.jpowsour.2009.05.002
11.
Wang
,
W.
,
Yang
,
S.
, and
Lin
,
C.
,
2018
, “
State of Charge Dependent Constitutive Model of the Jellyroll of Cylindrical Lithium-Ion Cells
,”
IEEE Access
,
6
, pp.
26358
26366
. 10.1109/ACCESS.2018.2825466
12.
Zhu
,
J.
,
Zhang
,
X.
, and
Sahraei
,
E.
,
2016
, “
Deformation and Failure Mechanisms of 18650 Battery Cells Under Axial Compression
,”
J. Power Source
,
336
, pp.
332
340
. 10.1016/j.jpowsour.2016.10.064
13.
Xu
,
J.
,
Liu
,
B.
, and
Wang
,
L.
,
2015
, “
Dynamic Mechanical Integrity of Cylindrical Lithium-Ion Battery Cell Upon Crushing
,”
Eng. Failure Analysis
,
53
, pp.
97
110
. 10.1016/j.engfailanal.2015.03.025
14.
Xia
,
Y.
,
Wierzbicki
,
T.
, and
Sahraei
,
E.
,
2014
, “
Damage of Cells and Battery Packs Due to Ground Impact
,”
J. Power Sources
,
267
, pp.
78
97
. 10.1016/j.jpowsour.2014.05.078
15.
Zhang
,
C.
,
Xu
,
J.
,
Cao
,
L.
,
Wu
,
Z.
, and
Santhanagopalan
,
S.
,
2017
, “
Constitutive Behavior and Progressive Mechanical Failure of Electrodes in Lithium-Ion Batteries
,”
J. Power Sources
,
357
, pp.
126
137
. 10.1016/j.jpowsour.2017.04.103
16.
Li
,
H.
,
Liu
,
B.
,
Zhou
,
D.
, and
Zhang
,
C.
,
2020
, “
Coupled Mechanical–Electrochemical–Thermal Study on the Short-Circuit Mechanism of Lithium-Ion Batteries Under Mechanical Abuse
,”
J. Electrochem. Soc.
,
167
(
12
), pp.
120501
120513
. 10.1149/1945-7111/aba96f
17.
Kim
,
G.
,
Smith
,
K.
,
Ireland
,
J.
, and
Pesaran
,
A.
,
2012
, “
Fail-Safe Design for Large Capacity Lithium-Ion Battery Systems
,”
J. Power Sources
,
210
, pp.
243
253
. 10.1016/j.jpowsour.2012.03.015
18.
Bernardi
,
D.
,
Pawlikowski
,
E.
, and
Newman
,
J.
,
1985
, “
A General Energy Balance for Battery System
,”
J. Electrochem. Soc.
,
132
(
1
), pp.
5
12
. 10.1149/1.2113792
19.
Forgez
,
C.
,
Do
,
D. V.
, and
Friedrich
,
G.
,
2010
, “
Thermal Modeling of a Cylindrical LiFePO4/Graphite Lithium-Ion Battery
,”
J. Power Sources
,
195
(
9
), pp.
2961
2968
. 10.1016/j.jpowsour.2009.10.105
20.
Kriston
,
A.
,
Pfrang
,
A.
, and
Döring
,
H.
,
2017
, “
External Short Circuit Performance of Graphite-LiNi1/3Co1/3Mn1/3O2 and Graphite-LiNi0.8Co0.15Al0.05O2 Cells at Different External Resistances
,”
J. Power Sources
,
361
, pp.
170
181
. 10.1016/j.jpowsour.2017.06.056
21.
Zhang
,
C.
,
Santhanagopalan
,
S.
, and
Sprague
,
M. A.
,
2015
, “
Coupled Mechanical-Electrical-Thermal Modeling for Short Circuit Prediction in a Lithium-Ion Cell Under Mechanical Abuse
,”
J. Power Sources
,
290
, pp.
102
113
. 10.1016/j.jpowsour.2015.04.162
22.
Kalnaus
,
S.
,
Wang
,
Y.
, and
Turner
,
J. A.
,
2007
, “
Mechanical Behavior and Failure Mechanisms of Li-Ion Battery Separators
,”
J. Power Sources
,
348
, pp.
255
263
. 10.1016/j.jpowsour.2017.03.003
23.
Zhang
,
C.
,
Santhanagopalan
,
S.
, and
Sprague
,
M. A.
,
2015
, “
A Representative-Sandwich Model for Simultaneously Coupled Mechanical-Electrical-Thermal Simulation of a Lithium-Ion Cell Under Quasi-Static Indentation Tests
,”
J. Power Sources
,
298
, pp.
309
321
. 10.1016/j.jpowsour.2015.08.049
You do not currently have access to this content.