Abstract

In the present study, the catalytic activity of copper-loaded cobalt-based metal–organic framework (ZIF-67) composites was studied for their electrochemical oxygen reduction reaction (ORR). The Cu-ZIF-67 composite was prepared by the solvothermal method. After pyrolysis under argon atmosphere at 700 °C, the composite was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR). The electrochemical activity of the composites was tested for ORR in 0.1 M alkaline media using the three-electrode system by cyclic voltammetry (CV), Tafel plots, and electrochemical impedance spectroscopy (EIS). The composites showed variable activity with a current density of 1.32 mA cm−2 at 0.71 V (versus reversible hydrogen electrode (RHE)) onset potential for 70 wt% Cu-ZIF-67, 7.5 mA cm−2 at 0.82 V (versus RHE) onset potential for 50 wt% Cu-ZIF-67, and 11.85 mA cm−2 at 0.85 V (versus RHE) for 30% Cu-ZIF-67. The increasing ratio of the ZIF-67 effect can be attributed to the increased activity of ZIF-67 with the synergistic effect of Cu toward increased current density.

References

1.
Li
,
L.
,
Xie
,
W.
,
Chen
,
J.
, and
Yang
,
J.
,
2018
, “
ZIF-67 Derived P/Ni/Co/NC Nanoparticles as Highly Efficient Electrocatalyst for Oxygen Reduction Reaction (ORR)
,”
J. Solid State Chem.
,
264
(
8
), pp.
1
5
. 10.1016/j.jssc.2018.04.035
2.
Ning
,
F.
,
He
,
X.
,
Shen
,
Y.
,
Jin
,
H.
,
Li
,
Q.
,
Li
,
D.
,
Li
,
S.
,
Zhan
,
Y.
,
Du
,
Y.
,
Jiang
,
J.
,
Yang
,
H.
, and
Zhou
,
X.
,
2017
, “
Flexible and Lightweight Fuel Cell With High Specific Power Density
,”
ACS Nano
,
11
(
6
), pp.
5982
5991
. 10.1021/acsnano.7b01880
3.
Cheng
,
X.
,
Shi
,
Z.
,
Glass
,
N.
,
Zhang
,
L.
,
Zhang
,
J.
,
Song
,
D.
,
Liu
,
Z. S.
,
Wang
,
H.
, and
Shen
,
J.
,
2007
, “
A Review of PEM Hydrogen Fuel Cell Contamination: Impacts, Mechanisms, and Mitigation
,”
J. Power Sources
,
165
(
2
), pp.
739
756
. 10.1016/j.jpowsour.2006.12.012
4.
Shi
,
X.
,
Iqbal
,
N.
,
Kunwar
,
S. S.
,
Wahab
,
G.
,
Kasat
,
H. A.
, and
Kannan
,
A. M.
,
2018
, “
PtCo@NCNTs Cathode Catalyst Using ZIF-67 for Proton Exchange Membrane Fuel Cell
,”
Int. J. Hydrogen Energy
,
43
(
6
), pp.
3520
3526
. 10.1016/j.ijhydene.2017.06.084
5.
Bai
,
Y.
,
Yi
,
B.
,
Li
,
J.
,
Jiang
,
S.
,
Zhang
,
H.
,
Shao
,
Z.
, and
Song
,
Y.
,
2016
, “
A High Performance Non-Noble Metal Electrocatalyst for the Oxygen Reduction Reaction Derived From a Metal Organic Framework
,”
Chin. J. Catal.
,
37
(
7
), pp.
1127
1133
. 10.1016/S1872-2067(15)61104-4
6.
Morozan
,
A.
,
Jousselme
,
B.
, and
Palacin
,
S.
,
2011
, “
Low-Platinum and Platinum-Free Catalysts for the Oxygen Reduction Reaction at Fuel Cell Cathodes
,”
Energy Environ. Sci.
,
4
(
4
), pp.
1238
1254
. 10.1039/c0ee00601g
7.
Holton
,
O. T.
, and
Stevenson
,
J. W.
,
2013
, “
The Role of Platinum in Proton Exchange Membrane Fuel Cells Evaluation of Platinum’s Unique Properties for Use in Both the Anode and Cathode of a Proton Exchange Membrane Fuel Cell
,”
Platinum Met. Rev.
,
57
(
4
), pp.
259
271
. 10.1595/147106713X671222
8.
Yu
,
X.
, and
Ye
,
S.
,
2007
, “
Recent Advances in Activity and Durability Enhancement of Pt/C Catalytic Cathode in PEMFC. Part II: Degradation Mechanism and Durability Enhancement of Carbon Supported Platinum Catalyst
,”
J. Power Sources
,
172
(
1
), pp.
145
154
. 10.1016/j.jpowsour.2007.07.048
9.
Feng
,
Y.
,
Ye
,
F.
,
Liu
,
H.
, and
Yang
,
J.
,
2015
, “
Enhancing the Methanol Tolerance of Platinum Nanoparticles for the Cathode Reaction of Direct Methanol Fuel Cells Through a Geometric Design
,”
Sci. Rep.
,
5
(
11
), pp.
1
11
. 10.1038/srep16219
10.
Xia
,
B. Y.
,
Yan
,
Y.
,
Li
,
N.
,
Bin Wu
,
H.
,
Lou
,
X. W. D.
, and
Wang
,
X.
,
2016
, “
A Metal-Organic Framework-Derived Bifunctional Oxygen Electrocatalyst
,”
Nat. Energy
,
1
(
1
), pp.
1
8
. 10.1038/nenergy.2015.6
11.
Li
,
M.
,
Ma
,
Q.
,
Zi
,
W.
,
Liu
,
X.
,
Zhu
,
X.
, and
Liu
,
S. F.
,
2015
, “
Pt Monolayer Coating on Complex Network Substrate With High Catalytic Activity for the Hydrogen Evolution Reaction
,”
Sci. Adv.
,
1
(
8
), pp.
1
8
. 10.1126/sciadv.1400268
12.
Cook
,
T. R.
,
Zheng
,
Y. R.
, and
Stang
,
P. J.
,
2013
, “
Metal-Organic Frameworks and Self-Assembled Supramolecular Coordination Complexes: Comparing and Contrasting the Design, Synthesis, and Functionality of Metal-Organic Materials
,”
Chem. Rev.
,
113
(
1
), pp.
734
777
. 10.1021/cr3002824
13.
Shao
,
Y.
,
Sui
,
J.
,
Yin
,
G.
, and
Gao
,
Y.
,
2008
, “
Nitrogen-Doped Carbon Nanostructures and Their Composites as Catalytic Materials for Proton Exchange Membrane Fuel Cell
,”
Appl. Catal., B
,
79
(
1
), pp.
89
99
. 10.1016/j.apcatb.2007.09.047
14.
Stock
,
N.
, and
Biswas
,
S.
,
2012
, “
Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites
,”
Chem. Rev.
,
112
(
2
), pp.
933
969
. 10.1021/cr200304e
15.
Khan
,
I. A.
,
Qian
,
Y.
,
Badshah
,
A.
,
Nadeem
,
M. A.
, and
Zhao
,
D.
,
2016
, “
Highly Porous Carbon Derived From MOF-5 as a Support of ORR Electrocatalysts for Fuel Cells
,”
ACS Appl. Mater. Interfaces
,
8
(
27
), pp.
17268
17275
. 10.1021/acsami.6b04548
16.
Noro
,
S.
,
2013
, “
Metal-Organic Frameworks
,”
Compr. Inorg. Chem. II
,
5
(
7
), pp.
45
71
. https://doi.org/10.1016/B978-0-08-097774-4.00503-9
17.
Zou
,
L.
, and
Zhou
,
H. C.
,
2017
,
Nanostructured Materials for Next-Generation Energy Storage Conversion
,
Y. P.
Chen
,
S.
Bashir
, and
J.
Liu
, eds.,
Springer
,
Berlin/Heidelberg
, pp.
143
170
.
18.
Vitillo
,
J. G.
,
Regli
,
L.
,
Chavan
,
S.
,
Ricchiardi
,
G.
,
Spoto
,
G.
,
Dietzel
,
P. D. C.
,
Bordiga
,
S.
, and
Zecchina
,
A.
,
2008
, “
Role of Exposed Metal Sites in Hydrogen Storage in MOFs
,”
J. Am. Chem. Soc.
,
130
(
26
), pp.
8386
8396
. 10.1021/ja8007159
19.
Férey
,
G.
,
Serre
,
C.
,
Devic
,
T.
,
Maurin
,
G.
,
Jobic
,
H.
,
Llewellyn
,
P. L.
,
De Weireld
,
G.
,
Vimont
,
A.
,
Daturi
,
M.
, and
Chang
,
K. S.
,
2011
, “
Why Hybrid Porous Solids Capture Greenhouse Gases?
,”
Chem. Soc. Rev.
,
40
(
2
), pp.
550
562
. 10.1039/C0CS00040J
20.
Zanon
,
A.
,
Chaemchuen
,
S.
,
Mousavi
,
B.
, and
Verpoort
,
F.
,
2017
, “
1 Zn-Doped ZIF-67 as Catalyst for the CO2 Fixation Into Cyclic Carbonates
,”
J. CO2 Util.
,
20
(
7
), pp.
282
291
. 10.1016/j.jcou.2017.05.026
21.
Li
,
J.
,
Sculley
,
J.
, and
Zhou
,
H.
,
2012
, “
Metal–Organic Frameworks for Separations
,”
Chem. Rev.
,
112
(
2
), pp.
869
932
. 10.1021/cr200190s
22.
Zornoza
,
B.
,
Martinez-Joaristi
,
A.
,
Serra-Crespo
,
P.
,
Tellez
,
C.
,
Coronas
,
J.
,
Gascon
,
J.
, and
Kapteijn
,
F.
,
2011
, “
Functionalized Flexible MOFs as Fillers in Mixed Matrix Membranes for Highly Selective Separation of CO2 From CH4 at Elevated Pressures
,”
Chem. Commun.
,
47
(
33
), pp.
9522
9524
. 10.1039/c1cc13431k
23.
Lee
,
J.
,
Farha
,
O. K.
,
Roberts
,
J.
,
Scheidt
,
K. A.
,
Nguyen
,
S. T.
, and
Hupp
,
J. T.
,
2009
, “
Metal-Organic Framework Materials as Catalysts
,”
Chem. Soc. Rev.
,
38
(
5
), pp.
1450
1459
. 10.1039/b807080f
24.
Shen
,
K.
,
Chen
,
X.
,
Chen
,
J.
, and
Li
,
Y.
,
2016
, “
Development of MOF-Derived Carbon-Based Nanomaterials for Efficient Catalysis
,”
ACS Catal.
,
6
(
9
), pp.
5887
5903
. 10.1021/acscatal.6b01222
25.
Lloyd
,
J. C.
,
Masko
,
E. M.
,
Wu
,
C.
,
Keenan
,
M. M.
,
Pilla
,
D. M.
,
Aronson
,
W. J.
,
Chi
,
J. T.
, and
Freedland
,
S. J.
,
2013
, “
Fish Oil Slows Prostate Cancer Xenograft Growth Relative to Other Dietary Fats and Is Associated With Decreased Mitochondrial and Insulin Pathway Gene Expression
,”
Prostate Cancer Prostatic Dis.
,
16
(
4
), pp.
285
291
. 10.1038/pcan.2013.19
26.
Maryam
,
J.
,
Zhaolin
,
L.
, and
Ping
,
L. K.
,
2013
, “
A Graphene Oxide and Copper-Centered Metal Organic Framework Composite as a Tri-Functional Catalyst for HER, OER, and ORR
,”
Adv. Funct. Mater.
,
23
(
43
), pp.
5363
5372
. 10.1002/adfm.201300510
27.
Gonen
,
S.
,
Lori
,
O.
,
Cohen-Taguri
,
G.
, and
Elbaz
,
L.
,
2018
, “
Metal Organic Frameworks as a Catalyst for Oxygen Reduction: An Unexpected Outcome of a Highly Active Mn-MOF-Based Catalyst Incorporated in Activated Carbon
,”
Nanoscale
,
10
(
20
), pp.
9634
9641
. 10.1039/C7NR09081A
28.
Fu
,
S.
,
Zhu
,
C.
,
Song
,
J.
,
Du
,
D.
, and
Lin
,
Y.
,
2017
, “
Metal-Organic Framework-Derived Non-Precious Metal Nanocatalysts for Oxygen Reduction Reaction
,”
Adv. Energy Mater.
,
7
(
19
), p.
1700363
. 10.1002/aenm.201700363
29.
Wang
,
X.
,
Wang
,
Q.
,
Wang
,
Q.
,
Gao
,
F.
,
Gao
,
F.
,
Yang
,
Y.
, and
Guo
,
H.
,
2014
, “
Highly Dispersible and Stable Copper Terephthalate Metal-Organic Framework-Graphene Oxide Nanocomposite for an Electrochemical Sensing Application
,”
ACS Appl. Mater. Interfaces
,
6
(
14
), pp.
11573
11580
. 10.1021/am5019918
30.
Mehek
,
R.
,
Iqbal
,
N.
,
Noor
,
T.
,
Nasir
,
H.
,
Mehmood
,
Y.
, and
Ahmed
,
S.
,
2017
, “
Novel Co-MOF/Graphene Oxide Electrocatalyst for Methanol Oxidation
,”
Electrochim. Acta
,
255
(
11
), pp.
195
204
. 10.1016/j.electacta.2017.09.164
31.
Zhao
,
Y.
,
Cao
,
B.
,
Wang
,
X.
,
Wang
,
X.
,
Al-Mamun
,
M.
,
Zhao
,
H.
,
Wang
,
J.
,
Zheng
,
Y.
, and
Su
,
X.
,
2018
, “
Facile Synthesis of Ultra-Thin CoxNi(1-x)/C Nano-Sheets and Their Remarkable Catalytic Properties in 4-Nitrophenol Reduction
,”
J. Environ. Chem. Eng.
,
6
(
4
), pp.
5239
5248
. 10.1016/j.jece.2018.08.023
32.
Mardiansyah
,
D.
,
Badloe
,
T.
,
Triyana
,
K.
,
Mehmood
,
M. Q.
,
Raeis-Hosseini
,
N.
,
Lee
,
Y.
,
Sabarman
,
H.
,
Kim
,
K.
, and
Rho
,
J.
,
2018
, “
Effect of Temperature on the Oxidation of Cu Nanowires and Development of an Easy to Produce, Oxidation-Resistant Transparent Conducting Electrode Using a PEDOT:PSS Coating
,”
Sci. Rep.
,
8
(
1
), pp.
1
9
. 10.1038/s41598-018-28744-9
33.
Kruk
,
M.
, and
Jaroniec
,
M.
,
2001
, “
Gas Adsorption Characterization of Ordered Organic-Inorganic Nanocomposite Materials
,”
Chem. Mater.
,
13
(
10
), pp.
3169
3183
. 10.1021/cm0101069
34.
Sarma
,
P. V.
,
Tiwary
,
C. S.
,
Radhakrishnan
,
S.
,
Ajayan
,
P. M.
, and
Shaijumon
,
M. M.
,
2018
, “
Oxygen Incorporated WS2 Nanoclusters With Superior Electrocatalytic Properties for Hydrogen Evolution Reaction
,”
Nanoscale
,
10
(
20
), pp.
9516
9524
. 10.1039/C8NR00253C
35.
Shi
,
J.
,
Claussen
,
J. C.
,
McLamore
,
E. S.
,
Ul Haque
,
A.
,
Jaroch
,
D.
,
Diggs
,
A. R.
,
Calvo-Marzal
,
P.
,
Rickus
,
J. L.
, and
Marshall Porterfield
,
D.
,
2011
, “
A Comparative Study of Enzyme Immobilization Strategies for Multi-Walled Carbon Nanotube Glucose Biosensors
,”
Nanotechnology
,
22
(
35
), p.
355502
. 10.1088/0957-4484/22/35/355502
36.
Ferrero
,
G. A.
,
Preuss
,
K.
,
Fuertes
,
A. B.
,
Sevilla
,
M.
, and
Titirici
,
M. M.
,
2016
, “
The Influence of Pore Size Distribution on the Oxygen Reduction Reaction Performance in Nitrogen Doped Carbon Microspheres
,”
J. Mater. Chem. A
,
4
(
7
), pp.
2581
2589
. 10.1039/C5TA10063A
37.
Yousef
,
A. K.
,
Kim
,
Y.
,
Bhanja
,
P.
,
Mei
,
P.
,
Pramanik
,
M.
,
Sanad
,
M. M. S.
,
Rashad
,
M. M.
,
El-Sayed
,
A. Y.
,
Alshehri
,
A. A.
,
Alghamdi
,
Y. G.
,
Alzahrani
,
K. A.
,
Ide
,
Y.
,
Lin
,
J.
, and
Yamauchi
,
Y.
,
2019
, “
Iron Phosphide Anchored Nanoporous Carbon as an Efficient Electrode for Supercapacitors and the Oxygen Reduction Reaction
,”
RSC Adv.
,
9
(
43
), pp.
25240
25247
. 10.1039/C9RA04326H
38.
Li
,
R.
,
Wei
,
Z.
,
Gou
,
X.
, and
Xu
,
W.
,
2009
, “
Phosphorus-Doped Graphene Nanosheets as Efficient Metal-Free Oxygen Reduction Electrocatalysts
,”
RSC Adv.
,
3
(
25
), pp.
9978
84
. 10.1039/c3ra41079j
39.
Li
,
L.
,
He
,
J.
,
Wang
,
Y.
,
Lv
,
X.
,
Gu
,
X.
,
Dai
,
P.
,
Liu
,
D.
, and
Zhao
,
X.
,
2019
, “
Metal-Organic Frameworks: a Promising Platform for Constructing Non-Noble Electrocatalysts for the Oxygen-Reduction Reaction
,”
J. Mater. Chem. A
,
7
(
5
), pp.
1964
1988
. 10.1039/C8TA11704G
40.
Cordeiro
,
C. A.
,
De Vries
,
M. G.
,
Cremers
,
T. I. F. H.
, and
Westerink
,
B. H. C.
,
2016
, “
The Role of Surface Availability in Membrane-Induced Selectivity for Amperometric Enzyme-Based Biosensors
,”
Sens. Actuators, B
,
223
(
2
), pp.
679
688
. 10.1016/j.snb.2015.09.029
41.
Hanif
,
S.
,
Shi
,
X.
,
Iqbal
,
N.
,
Noor
,
T.
,
Anwar
,
R.
, and
Kannan
,
A. M.
,
2019
, “
ZIF Derived PtNiCo/NC Cathode Catalyst for Proton Exchange Membrane Fuel Cell
,”
Appl. Catal., B
,
258
(
12
), pp.
117947
. 10.1016/j.apcatb.2019.117947
42.
Isse
,
A. A.
,
Berzi
,
G.
,
Falciola
,
L.
,
Rossi
,
M.
,
Mussini
,
P. R.
, and
Gennaro
,
A.
,
2009
, “
Electrocatalysis and Electron Transfer Mechanisms in the Reduction of Organic Halides at Ag
,”
J. Appl. Electrochem.
,
39
(
11
), pp.
2217
2225
. 10.1007/s10800-008-9768-z
43.
Qiao
,
J.
,
Xu
,
L.
,
Ding
,
L.
,
Shi
,
P.
,
Zhang
,
L.
,
Baker
,
R.
, and
Zhang
,
J.
,
2013
, “
Effect of KOH Concentration on the Oxygen Reduction Kinetics Catalyzed by Heat-Treated Co-Pyridine/C Electrocatalysts
,”
Int. J. Electrochem. Sci.
,
8
(
1
), pp.
1189
1208
.
44.
Andrzej
,
L.
,
1999
,
Modern Aspects of Electrochemistry
, Vol.
32
,
Springer
,
Boston, MA
, pp.
143
248
.
45.
Zhang
,
J.
,
Zhang
,
H.
,
Wu
,
J.
, and
Zhang
,
J.
,
2013
,
PEM Fuel Cell Testing and Diagnosis
,
J.
Zhang
,
H.
Zhang
,
J.
Wu
, and
J.
Zhang
, eds.,
Elsevier
,
Amsterdam, The Netherlands
, pp.
201
223
.
You do not currently have access to this content.