Abstract

A new process decomposed calculation method is developed to compare the cycle based charge, discharge, net, and overall energy efficiencies of lithium-ion batteries. Multi-cycle measurements for both constant current (CC) and constant current to constant voltage (CC-CV) charge models have been performed. Unlike most conventional efficiency calculation methods with one mean open-circuit voltage (OCV) curve, two OCV curves are calculated separately for the charge and discharge processes. These two OCV curves help to clarify the intra-cycle charge, discharge, net, and overall energy efficiencies. The relationships of efficiencies versus state of charge, state of quantity, and scaled stresses are demonstrated. Efficiency degradation patterns versus cycle numbers and scaled stresses are also illustrated with the artificial neural network (ANN) prediction method. The decaying ratios of the overall efficiencies are about 2% and 0.3% in the first 30 cycles, for CC and CC-CV, respectively. Hence, efficiencies of the CC-CV model are more stable compared with the CC model, which are shown by both experimental and ANN prediction results.

References

1.
Lu
,
L.
,
Han
,
X.
,
Li
,
J.
,
Hua
,
J.
, and
Ouyang
,
M.
,
2013
, “
A Review on the Key Issues for Lithium-Ion Battery Management in Electric Vehicles
,”
J. Power Sources
,
226
, pp.
272
288
. 10.1016/j.jpowsour.2012.10.060
2.
Luo
,
X.
,
Wang
,
J.
,
Dooner
,
M.
, and
Clarke
,
J.
,
2015
, “
Overview of Current Development in Electrical Energy Storage Technologies and the Application Potential in Power System Operation
,”
Appl. Energy
,
137
, pp.
511
536
. 10.1016/j.apenergy.2014.09.081
3.
Fathabadi
,
H.
,
2019
, “
Combining a Proton Exchange Membrane Fuel Cell (PEMFC) Stack With a Li-Ion Battery to Supply the Power Needs of a Hybrid Electric Vehicle
,”
Renew. Energy
,
130
, pp.
714
724
. 10.1016/j.renene.2018.06.104
4.
Majima
,
M.
,
Ujiie
,
S.
,
Yagasaki
,
E.
,
Koyama
,
K.
, and
Inazawa
,
S.
,
2001
, “
Development of Long Life Lithium Ion Battery for Power Storage
,”
J. Power Sources
,
101
(
1
), pp.
53
59
. 10.1016/S0378-7753(01)00554-7
5.
Köhler
,
U.
,
Kümpers
,
J.
, and
Ullrich
,
M.
,
2002
, “
High Performance Nickel-Metal Hydride and Lithium-Ion Batteries
,”
J. Power Sources
,
105
(
2
), pp.
139
144
. 10.1016/S0378-7753(01)00932-6
6.
Horiba
,
T.
,
Hironaka
,
K.
,
Matsumura
,
T.
,
Kai
,
T.
,
Koseki
,
M.
, and
Muranaka
,
Y.
,
2001
, “
Manganese Type Lithium Ion Battery for Pure and Hybrid Electric Vehicles
,”
J. Power Sources
,
97
, pp.
719
721
. 10.1016/S0378-7753(01)00599-7
7.
Liang
,
S.
,
Yan
,
W.
,
Wu
,
X.
,
Zhang
,
Y.
,
Zhu
,
Y.
,
Wang
,
H.
, and
Wu
,
Y.
,
2018
, “
Gel Polymer Electrolytes for Lithium Ion Batteries: Fabrication, Characterization and Performance
,”
Solid State Ionics
,
318
, pp.
2
18
. 10.1016/j.ssi.2017.12.023
8.
Tang
,
X.
,
Wang
,
Y.
,
Zou
,
C.
,
Yao
,
K.
,
Xia
,
Y.
, and
Gao
,
F.
,
2019
, “
A Novel Framework for Lithium-Ion Battery Modeling Considering Uncertainties of Temperature and Aging
,”
Energy Convers. Manage.
,
180
, pp.
162
170
. 10.1016/j.enconman.2018.10.082
9.
Wu
,
W.
,
Wang
,
S.
,
Wu
,
W.
,
Chen
,
K.
,
Hong
,
S.
, and
Lai
,
Y.
,
2019
, “
A Critical Review of Battery Thermal Performance and Liquid Based Battery Thermal Management
,”
Energy Convers. Manage.
,
182
, pp.
262
281
. 10.1016/j.enconman.2018.12.051
10.
Xu
,
M.
,
Wang
,
R.
,
Reichman
,
B.
, and
Wang
,
X.
,
2018
, “
Modeling the Effect of Two-Stage Fast Charging Protocol on Thermal Behavior and Charging Energy Efficiency of Lithium-Ion Batteries
,”
J. Energy Storage
,
20
, pp.
298
309
. 10.1016/j.est.2018.09.004
11.
Varini
,
M.
,
Campana
,
P. E.
, and
Lindbergh
,
G.
,
2019
, “
A Semi-Empirical, Electrochemistry-Based Model for Li-Ion Battery Performance Prediction Over Lifetime
,”
J. Energy Storage
,
25
, p.
100819
. 10.1016/j.est.2019.100819
12.
Sarkar
,
A.
,
Shrotriya
,
P.
,
Chandra
,
A.
, and
Hu
,
C.
,
2019
, “
Chemo-Economic Analysis of Battery Aging and Capacity Fade in Lithium-Ion Battery
,”
J. Energy Storage
,
25
, p.
100911
. 10.1016/j.est.2019.100911
13.
Shen
,
S.
,
Sadoughi
,
M.
,
Chen
,
X.
,
Hong
,
M.
, and
Hu
,
C.
,
2019
, “
A Deep Learning Method for Online Capacity Estimation of Lithium-Ion Batteries
,”
J. Energy Storage
,
25
, p.
100817
. 10.1016/j.est.2019.100817
14.
Ren
,
D.
,
Lu
,
L.
,
Shen
,
P.
,
Feng
,
X.
,
Han
,
X.
, and
Ouyang
,
M.
,
2019
, “
Battery Remaining Discharge Energy Estimation Based on Prediction of Future Operating Conditions
,”
J. Energy Storage
,
25
, p.
100836
. 10.1016/j.est.2019.100836
15.
Purushothaman
,
B. K.
, and
Landau
,
U.
,
2006
, “
Rapid Charging of Lithium-Ion Batteries Using Pulsed Currents: A Theoretical Analysis
,”
J. Electrochem. Soc.
,
153
(
3
), pp.
A533
A542
. 10.1149/1.2161580
16.
Pei
,
L.
,
Wang
,
T.
,
Lu
,
R.
, and
Zhu
,
C.
,
2014
, “
Development of a Voltage Relaxation Model for Rapid Open-Circuit Voltage Prediction in Lithium-Ion Batteries
,”
J. Power Sources
,
253
, pp.
412
418
. 10.1016/j.jpowsour.2013.12.083
17.
Pattipati
,
B.
,
Balasingam
,
B.
,
Avvari
,
G. V.
,
Pattipati
,
K. R.
, and
Bar-Shalom
,
Y.
,
2014
, “
Open Circuit Voltage Characterization of Lithium-Ion Batteries
,”
J. Power Sources
,
269
, pp.
317
333
. 10.1016/j.jpowsour.2014.06.152
18.
Fu
,
R.
,
Xiao
,
M.
, and
Choe
,
S. Y.
,
2013
, “
Modeling, Validation and Analysis of Mechanical Stress Generation and Dimension Changes of a Pouch Type High Power Li-Ion Battery
,”
J. Power Sources
,
224
, pp.
211
224
. 10.1016/j.jpowsour.2012.09.096
19.
Prussin
,
S.
,
1961
, “
Generation and Distribution of Dislocations by Solute Diffusion
,”
J. Appl. Phys.
,
32
(
10
), pp.
1876
1881
. 10.1063/1.1728256
20.
Christensen
,
J.
,
2010
, “
Modeling Diffusion-Induced Stress in Li-Ion Cells With Porous Electrodes
,”
J. Electrochem. Soc.
,
157
(
3
), pp.
A366
A380
. 10.1149/1.3269995
21.
Golmon
,
S.
,
Maute
,
K.
, and
Dunn
,
M. L.
,
2009
, “
Numerical Modeling of Electrochemical–Mechanical Interactions in Lithium Polymer Batteries
,”
Comput. Struct.
,
87
(
23–24
), pp.
1567
1579
. 10.1016/j.compstruc.2009.08.005
22.
Harris
,
S. J.
,
Deshpande
,
R. D.
,
Qi
,
Y.
,
Dutta
,
I.
, and
Cheng
,
Y. T.
,
2010
, “
Mesopores Inside Electrode Particles Can Change the Li-Ion Transport Mechanism and Diffusion-Induced Stress
,”
J. Mater. Res.
,
25
(
8
), pp.
1433
1440
. 10.1557/JMR.2010.0183
23.
Cannarella
,
J.
, and
Arnold
,
C. B.
,
2014
, “
Stress Evolution and Capacity Fade in Constrained Lithium-Ion Pouch Cells
,”
J. Power Sources
,
245
, pp.
745
751
. 10.1016/j.jpowsour.2013.06.165
24.
Zhang
,
S. S.
,
Xu
,
K.
, and
Jow
,
T. R.
,
2006
, “
Charge and Discharge Characteristics of a Commercial LiCoO2-Based 18650 Li-Ion Battery
,”
J. Power Sources
,
160
(
2
), pp.
1403
1409
. 10.1016/j.jpowsour.2006.03.037
25.
Liu
,
Y. H.
, and
Luo
,
Y. F.
,
2009
, “
Search for an Optimal Rapid-Charging Pattern for Li-Ion Batteries Using the Taguchi Approach
,”
IEEE Trans. Ind. Electron.
,
57
(
12
), pp.
3963
3971
. 10.1109/TIE.2009.2036020
26.
Zhang
,
H.
,
Yu
,
X.
, and
Braun
,
P. V.
,
2011
, “
Three-Dimensional Bicontinuous Ultrafast-Charge and-Discharge Bulk Battery Electrodes
,”
Nat. Nanotechnol.
,
6
(
5
), pp.
277
281
. 10.1038/nnano.2011.38
27.
Arora
,
S.
,
2018
, “
Selection of Thermal Management System for Modular Battery Packs of Electric Vehicles: A Review of Existing and Emerging Technologies
,”
J. Power Sources
,
400
, pp.
621
640
. 10.1016/j.jpowsour.2018.08.020
28.
Basu
,
S.
,
Hariharan
,
K. S.
,
Kolake
,
S. M.
,
Song
,
T.
,
Sohn
,
D. K.
, and
Yeo
,
T.
,
2016
, “
Coupled Electrochemical Thermal Modelling of a Novel Li-Ion Battery Pack Thermal Management System
,”
Appl. Energy
,
181
, pp.
1
13
. 10.1016/j.apenergy.2016.08.049
29.
Qian
,
K.
,
Huang
,
B.
,
Ran
,
A.
,
He
,
Y. B.
,
Li
,
B.
, and
Kang
,
F.
,
2019
, “
State-of-Health (SOH) Evaluation on Lithium-Ion Battery by Simulating the Voltage Relaxation Curves
,”
Electrochim. Acta
,
303
, pp.
183
191
. 10.1016/j.electacta.2019.02.055
30.
Yang
,
Q.
,
Xu
,
J.
,
Cao
,
B.
,
Xu
,
D.
,
Li
,
X.
, and
Wang
,
B.
,
2017
, “
State-of-Health Estimation of Lithium-Ion Battery Based on Interval Capacity
,”
Energy Procedia
,
105
, pp.
2342
2347
. 10.1016/j.egypro.2017.03.673
31.
Petzl
,
M.
, and
Danzer
,
M. A.
,
2013
, “
Advancements in OCV Measurement and Analysis for Lithium-Ion Batteries
,”
IEEE Trans. Energy Convers.
,
28
(
3
), pp.
675
681
. 10.1109/TEC.2013.2259490
32.
Gantenbein
,
S.
,
Weiss
,
M.
, and
Ivers-Tiffée
,
E.
,
2018
, “
Impedance Based Time-Domain Modeling of Lithium-Ion Batteries: Part I
,”
J. Power Sources
,
379
, pp.
317
327
. 10.1016/j.jpowsour.2018.01.043
33.
Ciulla
,
G.
,
D’Amico
,
A.
,
Di Dio
,
V.
, and
Lo Brano
,
V.
,
2019
, “
Modelling and Analysis of Real-World Wind Turbine Power Curves: Assessing Deviations From Nominal Curve by Neural Networks
,”
Renew. Energy
,
140
, pp.
477
492
. 10.1016/j.renene.2019.03.075
You do not currently have access to this content.