Abstract

The lithium anode could greatly increase the energy density of the cell, but inevitable lithium dendrites hinder its application. A powerful coating layer can effectively suppress the growth of dendrite by promoting a fast and uniform Li+ flux. Here, a polyolefin separator coated with a layer of nano cellulose fiber (NCF) and graphene oxide (GO) is designed to restrain the growth of Li-dendrite and accommodate thermal shrinkage resistance. The results of electrochemical impedance spectroscopy showed that the NCF/GO coating with a mass ratio of 3:5 showed the highest value of ionic conductivity. The Li/separator/Li symmetrical battery with NCF/GO coated separator can work for 65 h during continuous charging before the voltage dropping down to zero, which is about 40% longer than the battery with bare polyolefin separator. In addition, the NCF/GO coating layer can also increase the retention capacity ratio of a cell by more than 10% in the 100 charge/discharge cycles. In this paper, the as-prepared NCF/GO coating separator provides a reference for designing a long-life and safety battery with Li-anode by effectively inhibiting the lithium dendrite.

References

1.
Xu
,
W.
,
Wang
,
J.
,
Ding
,
F.
,
Chen
,
X.
,
Nasybutin
,
E.
,
Zhang
,
Y.
, and
Zhang
,
J.-G.
,
2014
, “
Lithium Metal Anodes for Rechargeable Batteries
,”
Energy Environ. Sci.
,
7
(
2
), pp.
513
537
. 10.1039/C3EE40795K
2.
Yan
,
K.
,
Lu
,
Z.
,
Lee
,
H.-W.
,
Xiong
,
F.
,
Hsu
,
P.-C.
,
Li
,
Y.
,
Zhao
,
J.
,
Chu
,
S.
, and
Cui
,
Y.
,
2016
, “
Selective Deposition and Stable Encapsulation of Lithium Through Heterogeneous Seeded Growth
,”
Nature Energy
,
1
(
3
), p.
16010
. 10.1038/nenergy.2016.10
3.
Park
,
J.
,
Jeong
,
J.
,
Lee
,
Y.
,
Oh
,
M.
,
Ryou
,
M.-H.
, and
Lee
,
Y. M.
,
2016
, “
Micro-Patterned Lithium Metal Anodes With Suppressed Dendrite Formation for Post Lithium-Ion Batteries
,”
Adv. Mater. Interfaces
,
3
(
11
), p.
1600140
. 10.1002/admi.201600140
4.
Ding
,
F.
,
Xu
,
W.
,
Graff
,
G. L.
,
Zhang
,
J.
,
Sushko
,
M. L.
,
Chen
,
X.
,
Shao
,
Y.
,
Engelhard
,
M. H.
,
Nie
,
Z.
,
Xiao
,
J.
,
Liu
,
X.
,
Sushko
,
P. V.
,
Liu
,
J.
, and
Zhang
,
J.-G.
,
2013
, “
Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism
,”
J. Am. Chem. Soc.
,
135
(
11
), pp.
4450
4456
. 10.1021/ja312241y
5.
Wood
,
K. N.
,
Noked
,
M.
, and
Dasgupta
,
N. P.
,
2017
, “
Lithium Metal Anodes: Toward an Improved Understanding of Coupled Morphological, Electrochemical, and Mechanical Behavior
,”
ACS Energy Lett.
,
2
(
3
), pp.
664
672
. 10.1021/acsenergylett.6b00650
6.
Zhu
,
B.
,
Jin
,
Y.
,
Hu
,
X.
,
Zheng
,
Q.
,
Zhang
,
S.
,
Wang
,
Q.
, and
Zhu
,
J.
,
2017
, “
Poly(dimethylsiloxane) Thin Film as a Stable Interfacial Layer for High-Performance Lithium-Metal Battery Anodes
,”
Adv. Mater. (Weinheim, Ger.)
,
29
(
2
), p.
1603755
. 10.1002/adma.201603755
7.
Liu
,
Y.
,
Lin
,
D.
,
Yuen
,
P. Y.
,
Liu
,
K.
,
Xie
,
J.
,
Dauskardt
,
R. H.
, and
Cui
,
Y.
,
2017
, “
An Artificial Solid Electrolyte Interphase With High Li-Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes
,”
Adv. Mater. (Weinheim, Ger.)
,
29
(
10
), p.
1605531
. 10.1002/adma.201605531
8.
Li
,
N.-W.
,
Yin
,
Y.-X.
,
Yang
,
C.-P.
, and
Guo
,
Y.-G.
,
2016
, “
An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes
,”
Adv. Mater. (Weinheim, Ger.)
,
28
(
9
), pp.
1853
1858
. 10.1002/adma.201504526
9.
Zhang
,
X.-Q.
,
Cheng
,
X.-B.
,
Chen
,
X.
,
Yan
,
C.
, and
Zhang
,
Q.
,
2017
, “
Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries
,”
Adv. Funct. Mater.
,
27
(
10
), p.
1605989
. 10.1002/adfm.201605989
10.
Qian
,
J.
,
Henderson
,
W. A.
,
Xu
,
W.
,
Bhattacharya
,
P.
,
Engelhard
,
M.
,
Borodin
,
O.
, and
Zhang
,
J.-G.
,
2015
, “
High Rate and Stable Cycling of Lithium Metal Anode
,”
Nat. Commun.
,
6
(
1
), p.
6362
. 10.1038/ncomms7362
11.
Tung
,
S.-O.
,
Ho
,
S.
,
Yang
,
M.
,
Zhang
,
R.
, and
Kotov
,
N. A.
,
2015
, “
A Dendrite-Suppressing Composite Ion Conductor From Aramid Nanofibres
,”
Nat. Commun.
,
6
(
1
), p.
6152
. 10.1038/ncomms7152
12.
Lin
,
D.
,
Liu
,
Y.
,
Liang
,
Z.
,
Lee
,
H.-W.
,
Sun
,
J.
,
Wang
,
H.
,
Yan
,
K.
,
Xie
,
J.
, and
Cui
,
Y.
,
2016
, “
Layered Reduced Graphene Oxide With Nanoscale Interlayer Gaps as a Stable Host for Lithium Metal Anodes
,”
Nat. Nanotechnol.
,
11
(
7
), pp.
626
632
. 10.1038/nnano.2016.32
13.
Chi
,
S.-S.
,
Liu
,
Y.
,
Song
,
W.-L.
,
Fan
,
L.-Z.
, and
Zhang
,
Q.
,
2017
, “
Prestoring Lithium Into Stable 3D Nickel Foam Host as Dendrite-Free Lithium Metal Anode
,”
Adv. Funct. Mater.
,
27
(
24
), p.
1700348
. 10.1002/adfm.201700348
14.
Zhang
,
R.
,
Chen
,
X.-R.
,
Chen
,
X.
,
Cheng
,
X.-B.
,
Zhang
,
X.-Q.
,
Yan
,
C.
, and
Zhang
,
Q.
,
2017
, “
Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendrite-Free Lithium Metal Anodes
,”
Angew. Chem. Int. Edit.
,
56
(
27
), pp.
7764
7768
. 10.1002/anie.201702099
15.
Ryou
,
M.-H.
,
Lee
,
D. J.
,
Lee
,
J.-N.
,
Lee
,
Y. M.
,
Park
,
J.-K.
, and
Choi
,
J. W.
,
2012
, “
Excellent Cycle Life of Lithium-Metal Anodes in Lithium-Ion Batteries With Mussel-Inspired Polydopamine-Coated Separators
,”
Adv. Energy Mater.
,
2
(
6
), pp.
645
650
. 10.1002/aenm.201100687
16.
Kim
,
J.-K.
,
Kim
,
D. H.
,
Joo
,
S. H.
,
Choi
,
B.
,
Cha
,
A.
,
Kim
,
K. M.
,
Kwon
,
T.-H.
,
Kwak
,
S. K.
,
Kang
,
S. J.
, and
Jin
,
J.
,
2017
, “
Hierarchical Chitin Fibers With Aligned Nanofibrillar Architectures: A Nonwoven-Mat Separator for Lithium Metal Batteries
,”
ACS Nano
,
11
(
6
), pp.
6114
6121
. 10.1021/acsnano.7b02085
17.
Chi
,
M.
,
Shi
,
L.
,
Wang
,
Z.
,
Zhu
,
J.
,
Mao
,
X.
,
Zhao
,
Y.
,
Zhang
,
M.
,
Sun
,
L.
, and
Yuan
,
S.
,
2016
, “
Excellent Rate Capability and Cycle Life of Li Metal Batteries With ZrO2/POSS Multilayer-Assembled PE Separators
,”
Nano Energy
,
28
, pp.
1
11
. 10.1016/j.nanoen.2016.07.037
18.
Deimede
,
V.
, and
Elmasides
,
C.
,
2015
, “
Separators for Lithium-Ion Batteries: A Review on the Production Processes and Recent Developments
,”
Energy Technol.
,
3
(
5
), pp.
453
468
. 10.1002/ente.201402215
19.
Lee
,
H.
,
Yanilmaz
,
M.
,
Toprakci
,
O.
,
Fu
,
K.
, and
Zhang
,
X.
,
2014
, “
A Review of Recent Developments in Membrane Separators for Rechargeable Lithium-Ion Batteries
,”
Energy Environ. Sci.
,
7
(
12
), pp.
3857
3886
. 10.1039/C4EE01432D
20.
Huang
,
X.
,
2011
, “
Separator Technologies for Lithium-Ion Batteries
,”
J. Solid State Electrochem.
,
15
(
4
), pp.
649
662
. 10.1007/s10008-010-1264-9
21.
Nunes-Pereira
,
J.
,
Costa
,
C. M.
, and
Lanceros-Mendez
,
S.
,
2015
, “
Polymer Composites and Blends for Battery Separators: State of the Art, Challenges and Future Trends
,”
J. Power Sources
,
281
, pp.
378
398
. 10.1016/j.jpowsour.2015.02.010
22.
Ryou
,
M.-H.
,
Lee
,
Y. M.
,
Park
,
J.-K.
, and
Choi
,
J. W.
,
2011
, “
Mussel-Inspired Polydopamine-Treated Polyethylene Separators for High-Power Li-Ion Batteries
,”
Adv. Mater. (Weinheim, Ger.)
,
23
(
27
), pp.
3066
3070
. 10.1002/adma.201100303
23.
Luo
,
W.
,
Zhou
,
L.
,
Fu
,
K.
,
Yang
,
Z.
,
Wan
,
J.
,
Manno
,
M.
,
Yao
,
Y.
,
Zhu
,
H.
,
Yang
,
B.
, and
Hu
,
L.
,
2015
, “
A Thermally Conductive Separator for Stable Li Metal Anodes
,”
Nano Lett.
,
15
(
9
), pp.
6149
6154
. 10.1021/acs.nanolett.5b02432
24.
Dai
,
J.
,
Shi
,
C.
,
Li
,
C.
,
Shen
,
X.
,
Peng
,
L.
,
Wu
,
D.
,
Sun
,
D.
,
Zhang
,
P.
, and
Zhao
,
J.
,
2016
, “
A Rational Design of Separator With Substantially Enhanced Thermal Features for Lithium-Ion Batteries by the Polydopamine-Ceramic Composite Modification of Polyolefin Membranes
,”
Energy Environ. Sci.
,
9
(
10
), pp.
3252
3261
. 10.1039/C6EE01219A
25.
Pan
,
R.
,
Cheung
,
O.
,
Wang
,
Z.
,
Tammela
,
P.
,
Huo
,
J.
,
Lindh
,
J.
,
Edstrom
,
K.
,
Stromme
,
M.
, and
Nyholm
,
L.
,
2016
, “
Mesoporous Cladophora Cellulose Separators for Lithium-Ion Batteries
,”
J. Power Sources
,
321
, pp.
185
192
. 10.1016/j.jpowsour.2016.04.115
26.
Xu
,
Q.
,
Kong
,
Q.
,
Liu
,
Z.
,
Zhang
,
J.
,
Wang
,
X.
,
Liu
,
R.
,
Yue
,
L.
, and
Cui
,
G.
,
2014
, “
Polydopamine-Coated Cellulose Microfibrillated Membrane as High Performance Lithium-Ion Battery Separator
,”
RSC Adv.
,
4
(
16
), pp.
7845
7850
. 10.1039/c3ra45879b
27.
Zhang
,
J.
,
Yue
,
L.
,
Kong
,
Q.
,
Liu
,
Z.
,
Zhou
,
X.
,
Zhang
,
C.
,
Xu
,
Q.
,
Zhang
,
B.
,
Ding
,
G.
,
Qin
,
B.
,
Duan
,
Y.
,
Wang
,
Q.
,
Yao
,
J.
,
Cui
,
G.
, and
Chen
,
L.
,
2014
, “
Sustainable, Heat-Resistant and Flame-Retardant Cellulose-Based Composite Separator for High-Performance Lithium Ion Battery
,”
Sci. Rep.
,
4
(
1
), p.
3935
. 10.1038/srep03935
28.
Zolin
,
L.
,
Destro
,
M.
,
Chaussy
,
D.
,
Penazzi
,
N.
,
Gerbaldi
,
C.
, and
Beneventi
,
D.
,
2015
, “
Aqueous Processing of Paper Separators by Filtration Dewatering: Towards Li-Ion Paper Batteries
,”
J. Mater. Chem. A
,
3
(
28
), pp.
14894
14901
. 10.1039/C5TA03716F
29.
Kang
,
I. S.
,
Lee
,
Y. S.
, and
Kim
,
D. W.
,
2014
, “
Improved Cycling Stability of Lithium Electrodes in Rechargeable Lithium Batteries
,”
J. Electrochem. Soc.
,
161
(
1
), pp.
A53
A57
. 10.1149/2.029401jes
30.
Wang
,
Z.
,
Pan
,
R.
,
Sun
,
R.
,
Edstrom
,
K.
,
Stromme
,
M.
, and
Nyholm
,
L.
,
2018
, “
Nanocellulose Structured Paper-Based Lithium Metal Batteries
,”
ACS Appl. Energy Mater.
,
1
(
8
), pp.
4341
4350
. 10.1021/acsaem.8b00961
31.
Wang
,
Z.
,
Pan
,
R.
,
Ruan
,
C.
,
Edstrom
,
K.
,
Stromme
,
M.
, and
Nyholm
,
L.
,
2018
, “
Redox-Active Separators for Lithium-Ion Batteries
,”
Adv. Sci.
,
5
(
3
), p.
1700663
. 10.1002/advs.201700663
32.
Sheng
,
J.
,
Chen
,
T.
,
Wang
,
R.
,
Zhang
,
Z.
,
Hua
,
F.
, and
Yang
,
R.
,
2020
, “
Ultra-Light Cellulose Nanofibril Membrane for Lithium-Ion Batteries
,”
J. Membr. Sci.
,
595
, p.
117550
. 10.1016/j.memsci.2019.117550
33.
Jiang
,
G.
,
Li
,
K.
,
Mao
,
J.
,
Jiang
,
N.
,
Luo
,
J.
,
Ding
,
G.
,
Li
,
Y.
,
Sun
,
F.
,
Dai
,
B.
, and
Li
,
Y.
,
2020
, “
Sandwich-Like Prussian Blue/Graphene Oxide Composite Films as Ion-Sieves for Fast and Uniform Li Ionic Flux in Highly Stable Li Metal Batteries
,”
Chem. Eng. J.
,
385
, p.
123398
. 10.1016/j.cej.2019.123398
34.
Rojaee
,
R.
, and
Shahbazian-Yassar
,
R.
,
2020
, “
Two-Dimensional Materials to Address the Lithium Battery Challenges
,”
ACS Nano
,
14
(
3
), pp.
2628
2658
. 10.1021/acsnano.9b08396
35.
Shin
,
W.-K.
,
Kannan
,
A. G.
, and
Kim
,
D.-W.
,
2015
, “
Effective Suppression of Dendritic Lithium Growth Using an Ultrathin Coating of Nitrogen and Sulfur Codoped Graphene Nanosheets on Polymer Separator for Lithium Metal Batteries
,”
ACS Appl. Mater. Interfaces
,
7
(
42
), pp.
23700
23707
. 10.1021/acsami.5b07730
36.
Li
,
B.
,
Li
,
Y.
,
Dai
,
D.
,
Chang
,
K.
,
Tang
,
H.
,
Chang
,
Z.
,
Wang
,
C.
,
Yuan
,
X.-Z.
, and
Wang
,
H.
,
2015
, “
Facile and Nonradiation Pretreated Membrane as a High Conductive Separator for Li-Ion Batteries
,”
ACS Appl. Mater. Interfaces
,
7
(
36
), pp.
20184
20189
. 10.1021/acsami.5b05718
37.
Grizzi
,
I.
,
Braud
,
C.
, and
Vert
,
M.
,
1998
, “
Calcium Alginate Dressings—I. Physico-Chemical Characterization and Effect of Sterilization
,”
J. Biomater. Sci., Polym. Ed.
,
9
(
2
), pp.
189
204
. 10.1163/156856298X00514
38.
Dai
,
D.
,
Yang
,
L.
,
Zheng
,
S.
,
Niu
,
J.
,
Sun
,
Z.
,
Wang
,
B.
,
Yang
,
Y.
, and
Li
,
B.
,
2020
, “
Modified Alginate Dressing With High Thermal Stability as a New Separator for Li-Ion Batteries
,”
Chem. Commun.
,
56
(
45
), pp.
6149
6152
. 10.1039/D0CC01729A
39.
Lizundia
,
E.
,
Vilas
,
J. L.
, and
Leon
,
L. M.
,
2015
, “
Crystallization, Structural Relaxation and Thermal Degradation in Poly(L-Lactide)/Cellulose Nanocrystal Renewable Nanocomposites
,”
Carbohydr. Polym.
,
123
, pp.
256
265
. 10.1016/j.carbpol.2015.01.054
40.
Lizundia
,
E.
,
Thanh-Dinh
,
N.
,
Vilas
,
J. L.
,
Hamadc
,
W. Y.
, and
MacLachlan
,
M. J.
,
2017
, “
Chiroptical Luminescent Nanostructured Cellulose Films
,”
Mater. Chem. Front.
,
1
(
5
), pp.
979
987
. 10.1039/C6QM00225K
41.
Goncalves
,
R.
,
Lizundia
,
E.
,
Silva
,
M. M.
,
Costa
,
C. M.
, and
Lanceros-Mendez
,
S.
,
2019
, “
Mesoporous Cellulose Nanocrystal Membranes as Battery Separators for Environmentally Safer Lithium-Ion Batteries
,”
ACS Appl. Energy Mater.
,
2
(
5
), pp.
3749
3761
. 10.1021/acsaem.9b00458
You do not currently have access to this content.