Abstract

Developing an efficient, green, and low-cost non noble metal catalyst toward oxygen evolution reaction (OER) has been urgent for new generation of sustainable energy technologies. Herein, the Co/Ni metal-organic frameworks (MOFs) derived metal phosphides/carbon matrix composites are successfully produced by the precipitation-carbonization-phosphorization processes. The obtained samples are characterized and analyzed for structural and morphological investigation. Electrochemical tests for OER are performed in the alkaline medium. The positive effects of P, Ni doping in MOFs on the structure and properties of composites have been analyzed. Benefitting from the unique structure of three-dimensional flower-like polyhedron with rich structure and higher porosity, the NiCo-P/NC catalyst exhibits the lowest overpotential of 0.32 V compared with the commercial IrO2 (0.34 V) at 10 mA/cm2, as well as outstanding stability and kinetic mechanism. Besides, the cost of the proposed novel material is calculated to be 4.337 US$/g, which is only 1.57% of that of commercial IrO2 (276 US$/g). The results obtained from the MOF-derived low-cost and high-efficiency OER catalyst would provide a new perspective on application of electrochemical storage and batteries.

References

1.
Chia
,
X.
, and
Pumera
,
M.
,
2018
, “
Characteristics and Performance of Two-Dimensional Materials for Electrocatalysis
,”
Nat. Catal.
,
1
(
12
), pp.
909
921
.
2.
Hu
,
E. L.
,
Feng
,
Y. F.
,
Nai
,
J. W.
,
Zhao
,
D.
,
Hu
,
Y.
, and
Lou
,
X. W.
,
2018
, “
Construction of Hierarchical Ni-Co-P Hollow Nanobricks With Oriented Nanosheets for Efficient Overall Water Splitting
,”
Energy Environ. Sci.
,
11
(
4
), pp.
872
880
.
3.
Guan
,
C.
,
Liu
,
X.
,
Ren
,
W.
,
Li
,
X.
,
Cheng
,
C. W.
, and
Wang
,
J.
,
2017
, “
Rational Design of Metal-Organic Framework Derived Hollow NiCo2O4 Arrays for Flexible Supercapacitor and Electrocatalysis
,”
Adv. Energy Mater.
,
7
(
12
), p.
1602391
.
4.
Xu
,
Q. C.
,
Jiang
,
H.
,
Zhang
,
H. X.
,
Hu
,
Y. J.
, and
Li
,
C. Z.
,
2019
, “
Heterogeneous Interface Engineered Atomic Configuration on Ultrathin Ni(OH)2/Ni3S2 Nanoforests for Efficient Water Splitting
,”
Appl. Catal. B
,
242
, pp.
60
66
.
5.
Katsounaros
,
I.
,
Cherevko
,
S.
,
Zeradjanin
,
A. R.
, and
Mayrhofer
,
K. J. J.
,
2014
, “
Oxygen Electrochemistry as a Cornerstone for Sustainable Energy Conversion
,”
Angew. Chem., Int. Ed.
,
53
(
1
), pp.
102
121
.
6.
Christopher
,
K.
, and
Dimitrios
,
R.
,
2012
, “
A Review on Exergy Comparison of Hydrogen Production Methods From Renewable Energy Sources
,”
Energy Environ. Sci.
,
5
(
5
), pp.
6640
6651
.
7.
Zhou
,
H. Q.
,
Yu
,
F.
,
Zhu
,
Q.
,
Sun
,
J. Y.
,
Qin
,
F.
,
Yu
,
L.
,
Bao
,
J. M.
,
Yu
,
Y.
,
Chen
,
S.
, and
Ren
,
Z. F.
,
2018
, “
Water Splitting by Electrolysis at High Current Densities Under 1.6 Volts
,”
Energy Environ. Sci.
,
11
(
10
), pp.
2858
2864
.
8.
Dresp
,
S.
,
Dionigi
,
F.
,
Klingenhof
,
M.
, and
Strasser
,
P.
,
2019
, “
Direct Electrolytic Splitting of Seawater: Opportunities and Challenges
,”
ACS Energy Lett.
,
4
(
4
), pp.
933
942
.
9.
Wang
,
J. Y.
,
Ji
,
L. L.
,
Teng
,
X.
,
Liu
,
Y. Y.
,
Guo
,
L. X.
, and
Chen
,
Z. F.
,
2019
, “
Decoupling Half-Reactions of Electrolytic Water Splitting by Integrating a Polyaniline Electrode
,”
J. Mater. Chem. A
,
7
(
21
), pp.
13149
13153
.
10.
Zhang
,
M. D.
,
Dai
,
Q. B.
,
Zheng
,
H. G.
,
Chen
,
M. D.
, and
Dai
,
L. M.
,
2018
, “
Novel MOF-Derived Co@N-C Bifunctional Catalysts for Highly Efficient Zn-Air Batteries and Water Splitting
,”
Adv. Mater.
,
30
(
10
), p.
1705431
.
11.
Amiinu
,
I. S.
,
Pu
,
Z. H.
,
Liu
,
X. B.
,
Owusu
,
K. A.
,
Monestel
,
H. G. R.
,
Boakye
,
F. O.
,
Zhang
,
H. N.
, and
Mu
,
S. C.
,
2017
, “
Multifunctional Mo-N/C@MoS2 Electrocatalysts for HER, OER, ORR, and Zn-Air Batteries
,”
Adv. Funct. Mater.
,
27
(
44
), p.
1702300
.
12.
Li
,
J.
,
Li
,
G. S.
, and
Wang
,
J. H.
,
2020
, “
A Novel Core–Double Shell Heterostructure Derived From a Metal-Organic Framework for Efficient HER, OER and ORR Electrocatalysis
,”
Inorg. Chem. Front.
,
7
(
1
), pp.
191
197
.
13.
Zhang
,
X. X.
,
Liu
,
Q.
,
Shi
,
X. F.
,
Asiri
,
A. M.
, and
Sun
,
X. P.
,
2018
, “
An Fe-MOF Nanosheet Array With Superior Activity Towards the Alkaline Oxygen Evolution Reaction
,”
Inorg. Chem. Front.
,
5
(
6
), pp.
1405
1408
.
14.
Masud
,
J.
,
Umapathi
,
S.
,
Ashokaan
,
N.
, and
Nath
,
M.
,
2016
, “
Iron Phosphide Nanoparticles as an Efficient Electrocatalyst for the OER in Alkaline Solution
,”
J. Mater. Chem. A
,
4
(
25
), pp.
9750
9754
.
15.
Hu
,
H.
,
Guan
,
B. Y.
,
Xia
,
B. Y.
, and
Lou
,
X. W.
,
2015
, “
Designed Formation of Co3O4/NiCo2O4 Double-Shelled Nanocages With Enhanced Pseudocapacitive and Electrocatalytic Properties
,”
J. Am. Chem. Soc.
,
137
(
16
), pp.
5590
5595
.
16.
Ganesan
,
P.
,
Prabu
,
M.
,
Sanetuntikul
,
J.
, and
Shanmugam
,
S.
,
2015
, “
Cobalt Sulfide Nanoparticles Grown on Nitrogen and Sulfur Co-Doped Graphene Oxide: An Efficient Electrocatalyst for Oxygen Reduction and Evolution Reactions
,”
ACS Catal.
,
5
(
6
), pp.
3625
3637
.
17.
Gao
,
M. R.
,
Cao
,
X.
,
Gao
,
Q.
,
Xu
,
Y. F.
,
Zheng
,
Y. R.
,
Jiang
,
J.
, and
Yu
,
S. H.
,
2014
, “
Nitrogen-Doped Graphene Supported CoSe2 Nanobelt Composite Catalyst for Efficient Water Oxidation
,”
ACS Nano
,
8
(
4
), pp.
3970
3978
.
18.
Yu
,
X. Y.
,
Feng
,
Y.
,
Guan
,
B. Y.
,
Lou
,
X. W.
, and
Paik
,
U.
,
2016
, “
Carbon Coated Porous Nickel Phosphides Nanoplates for Highly Efficient Oxygen Evolution Reaction
,”
Energy Environ. Sci.
,
9
(
4
), pp.
1246
1250
.
19.
Duan
,
H. H.
,
Li
,
D. G.
,
Tang
,
Y.
,
He
,
Y.
,
Ji
,
S. F.
,
Wang
,
R. Y.
,
Lv
,
H. F.
,
Lopes
,
P. P.
,
Paulikas
,
A. P.
,
Li
,
H. Y.
,
Mao
,
S. X.
,
Wang
,
C. M.
,
Markovic
,
N. M.
,
Li
,
J.
,
Stamenkovic
,
V. R.
, and
Li
,
Y. D.
,
2017
, “
High Performance Rh2P Electrocatalyst for Efficient Water Splitting
,”
J. Am. Chem. Soc.
,
139
(
15
), pp.
5494
5502
.
20.
Yang
,
L.
,
Zeng
,
X. F.
,
Wang
,
W. C.
, and
Cao
,
D. P.
,
2018
, “
Recent Progress in MOF-Derived, Heteroatom-Doped Porous Carbons as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells
,”
Adv. Funct. Mater.
,
28
(
7
), p.
1704537
.
21.
Chen
,
Y. Z.
,
Wang
,
C. M.
,
Wu
,
Z. Y.
,
Xiong
,
Y. J.
,
Xu
,
Q.
,
Yu
,
S. H.
, and
Jiang
,
H. L.
,
2015
, “
Metal-Organic Frameworks: From Bimetallic Metal-Organic Framework to Porous Carbon: High Surface Area and Multicomponent Active Dopants for Excellent Electrocatalysis
,”
Adv. Mater.
,
27
(
34
), pp.
5009
5009
.
22.
Li
,
X. Y.
,
Jiang
,
Q. Q.
,
Dou
,
S.
,
Deng
,
L. B.
,
Huo
,
J.
, and
Wang
,
S. Y.
,
2016
, “
ZIF-67-Derived Co-NC@CoP-NC Nanopolyhedra as an Efficient Bifunctional Oxygen Electrocatalyst
,”
J. Mater. Chem. A
,
4
(
41
), pp.
15836
15840
.
23.
Fu
,
S. F.
,
Zhu
,
C. Z.
,
Song
,
J. H.
,
Du
,
D.
, and
Lin
,
Y. H.
,
2017
, “
Metal-Organic Framework-Derived Non-Precious Metal Nanocatalysts for Oxygen Reduction Reaction
,”
Adv. Energy Mater.
,
7
(
19
), p.
1700363
.
24.
Zhang
,
X.
,
Luo
,
J. S.
,
Wan
,
K.
,
Plessers
,
D.
,
Sels
,
B.
,
Song
,
J. X.
,
Chen
,
L. G.
,
Zhang
,
T.
,
Tang
,
P. Y.
,
Morante
,
J. R.
,
Arbiol
,
J.
, and
Fransaer
,
J.
,
2019
, “
From Rational Design of a New Bimetallic MOF Family With Tunable Linkers to OER Catalysts
,”
J. Mater. Chem. A
,
7
(
4
), pp.
1616
1628
.
25.
Zhang
,
X. P.
,
Sun
,
W. D.
,
Du
,
H. T.
,
Kong
,
R. M.
, and
Qu
,
F. L.
,
2018
, “
A Co-MOF Nanosheet Array as a High-Performance Electrocatalyst for the Oxygen Evolution Reaction in Alkaline Electrolytes
,”
Inorg. Chem. Front.
,
5
(
2
), pp.
344
347
.
26.
Singh
,
K.
,
Campos
,
J. D. G.
,
Dinic
,
F.
,
Hao
,
Z. M.
,
Yuan
,
T. G.
, and
Voznyy
,
O.
,
2020
, “
Manganese MOF Enables Efficient Oxygen Evolution in Acid
,”
ACS Mater Lett.
,
2
(
7
), pp.
798
800
.
27.
He
,
P. L.
,
Yu
,
X. Y.
, and
Lou
,
X. W.
,
2017
, “
Carbon-Incorporated Nickel-Cobalt Mixed Metal Phosphide Nanoboxes With Enhanced Electrocatalytic Activity for Oxygen Evolution
,”
Angew. Chem., Int. Ed.
,
56
(
14
), pp.
3897
3900
.
28.
Wang
,
X.
,
Ma
,
Z. J.
,
Chai
,
L. L.
,
Xu
,
L. Q.
,
Zhu
,
Z. Y.
,
Hu
,
Y.
,
Qian
,
J. J.
, and
Huang
,
S. M.
,
2019
, “
MOF Derived N-Doped Carbon Coated CoP Particle/Carbon Nanotube Composite for Efficient Oxygen Evolution Reaction
,”
Carbon
,
141
, pp.
643
651
.
29.
Wang
,
X.
,
Chai
,
L. L.
,
Ding
,
J. Y.
,
Zhong
,
L.
,
Du
,
Y. J.
,
Li
,
T. T.
,
Hu
,
Y.
,
Qian
,
J. J.
, and
Huang
,
S. M.
,
2019
, “
Chemical and Morphological Transformation of MOF-Derived Bimetallic Phosphide for Efficient Oxygen Evolution
,”
Nano Energy
,
62
, pp.
745
753
.
30.
Wang
,
R.
,
Dong
,
X. Y.
,
Du
,
J.
,
Zhao
,
J. Y.
, and
Zang
,
S. Q.
,
2018
, “
MOF-Derived Bifunctional Cu3P Nanoparticles Coated by a N, P-Co Doped Carbon Shell for Hydrogen Evolution and Oxygen Reduction
,”
Adv. Mater.
,
30
(
6
), p.
1703711
.
31.
Li
,
Z. Q.
, and
Yin
,
L. W.
,
2018
, “
Efficient Gel Route to Embed Phosphorus Into MOF-Derived Porous FePx as Anodes for High Performance Lithium-Ion Batteries
,”
Energy Stor. Mater.
,
14
, pp.
367
375
.
32.
Wei
,
X. J.
,
Zhang
,
Y. H.
,
He
,
H. C.
,
Peng
,
L.
,
Xiao
,
S. H.
,
Yao
,
S. R.
, and
Xiao
,
P.
,
2019
, “
Carbon-Incorporated Porous Honeycomb NiCoFe Phosphide Nanospheres Derived From a MOF Precursor for Overall Water Splitting
,”
Chem. Commun.
,
55
(
73
), pp.
10896
10899
.
33.
Li
,
Y. Q.
,
Xu
,
H. B.
,
Huang
,
H. Y.
,
Gao
,
L. G.
,
Zhao
,
Y. Y.
, and
Ma
,
T. L.
,
2018
, “
Synthesis of Co-B in Porous Carbon Using a Metal-Organic Framework (MOF) Precursor: A Highly Efficient Catalyst for the Oxygen Evolution Reaction
,”
Electrochem. Commun.
,
86
, pp.
140
144
.
34.
Xiao
,
P.
,
Chen
,
W.
, and
Wang
,
X.
,
2015
, “
A Review of Phosphide-Based Materials for Electrocatalytic Hydrogen Evolution
,”
Adv. Energy Mater.
,
5
(
24
), p.
1500985
.
35.
Shi
,
Y. M.
, and
Zhang
,
B.
,
2016
, “
Recent Advances in Transition Metal Phosphide Nanomaterials: Synthesis and Applications in Hydrogen Evolution Reaction
,”
Chem. Soc. Rev.
,
45
(
6
), pp.
1529
1541
.
36.
Zhong
,
H. X.
,
Wang
,
J.
,
Zhang
,
Y. W.
,
Xu
,
W. L.
,
Xing
,
W.
,
Zhang
,
Y. F.
, and
Zhang
,
X. B.
,
2014
, “
ZIF-8 Derived Grapheme-Based Nitrogen-Doped Porous Carbon Sheets as Highly Efficient and Durable Oxygen Reduction Electrocatalysts
,”
Angew. Chem., Int. Ed.
,
53
(
51
), pp.
14235
14239
.
37.
Chen
,
B. H.
,
He
,
X. B.
,
Yin
,
F. X.
,
Wang
,
H.
,
Liu
,
D. J.
,
Shi
,
R. X.
,
Chen
,
J. N.
, and
Yin
,
H. W.
,
2017
, “
MO-Co@ N-Doped Carbon (M = Zn or Co): Vital Roles of Inactive Zn and Highly Efficient Activity Toward Oxygen Reduction/Evolution Reactions for Rechargeable Zn-Air Battery
,”
Adv. Funct. Mater.
,
27
(
37
), p.
1700795
.
38.
Dou
,
S.
,
Li
,
X. Y.
,
Tao
,
L.
,
Huo
,
J.
, and
Wang
,
S. Y.
,
2016
, “
Cobalt Nanoparticle-Embedded Carbon Nanotube/Porous Carbon Hybrid Derived From MOF-Encapsulated Co3O4 for Oxygen Electrocatalysis
,”
Chem. Commun.
,
52
(
62
), pp.
9727
9730
.
39.
Li
,
D.
,
Baydoun
,
H.
,
Verani
,
C. N.
, and
Brock
,
S.
,
2016
, “
Efficient Water Oxidation Using CoMnP Nanoparticles
,”
J. Am. Chem. Soc.
,
138
(
12
), pp.
4006
4009
.
40.
Chang
,
J. F.
,
Xiao
,
Y.
,
Xiao
,
M. L.
,
Ge
,
J. J.
,
Liu
,
C. P.
, and
Xing
,
W.
,
2015
, “
Surface Oxidized Cobalt-Phosphide Nanorods as an Advanced Oxygen Evolution Catalyst in Alkaline Solution
,”
ACS Catal.
,
5
(
11
), pp.
6874
6878
.
41.
Mendoza-Garcia
,
A.
,
Zhu
,
H. Y.
,
Yu
,
Y. S.
,
Li
,
Q.
,
Zhou
,
L.
,
Su
,
D.
,
Kramer
,
M. J.
, and
Sun
,
S. H.
,
2015
, “
Controlled Anisotropic Growth of Co-Fe-P From Co-Fe-O Nanoparticles
,”
Angew. Chem., Int. Ed.
,
54
(
33
), pp.
9642
9645
.
42.
Xiao
,
C. L.
,
Lu
,
X. Y.
, and
Zhao
,
C.
,
2014
, “
Unusual Synergistic Effects Upon Incorporation of Fe and/or Ni Into Mesoporous Co3O4 for Enhanced Oxygen Evolution
,”
Chem. Commun.
,
50
(
70
), pp.
10122
10125
.
43.
Indra
,
A.
,
Menezes
,
P. W.
,
Sahraie
,
N. R.
,
Bergmann
,
A.
,
Das
,
C.
,
Tallarida
,
M.
,
Schmeißer
,
D.
,
Strasser
,
P.
, and
Driess
,
M.
,
2014
, “
Unification of Catalytic Water Oxidation and Oxygen Reduction Reactions: Amorphous Beat Crystalline Cobalt Iron Oxides
,”
J. Am. Chem. Soc.
,
136
(
50
), pp.
17530
17536
.
44.
Mao
,
S.
,
Wen
,
Z. H.
,
Huang
,
T. Z.
,
Hou
,
Y.
, and
Chen
,
J. H.
,
2014
, “
High-Performance Bi-Functional Electrocatalysts of 3D Crumpled Graphene-Cobalt Oxide Nanohybrids for Oxygen Reduction and Evolution Reactions
,”
Energy Environ. Sci.
,
7
(
2
), pp.
609
616
.
45.
Meyer
,
S.
,
Glaser
,
B.
, and
Quicker
,
P.
,
2011
, “
Technical, Economical, and Climate-Related Aspects of Biochar Production Technologies: A Literature Review
,”
Environ. Sci. Technol.
,
45
(
22
), pp.
9473
9483
.
46.
Noori
,
T.
,
Mukherjee
,
C. K.
, and
Ghangrekar
,
M. M.
,
2017
, “
Enhancing Performance of Microbial Fuel Cell by Using Grapheme Supported V2O5-Nanorod Catalytic Cathode
,”
Electrochim. Acta
,
228
, pp.
513
521
.
You do not currently have access to this content.