Abstract

Constructing the ordered catalyst layer is one of the most effective strategies to maximize the catalyst utilization in direct methanol fuel cells (DMFCs). To gain insight into the mass and charge transports in ordered catalyst layer, herein, a two-dimensional two-phase mass-transport model involving Knudsen diffusion was proposed. It is found that the simulation results of the model with Knudsen diffusion are more consistent with the experimental results than that of the model without Knudsen diffusion. It has been demonstrated that higher porosity near the oxygen diffusion layer facilitates the oxygen transport, and the optimal porosity is obtained by balancing mass and charge transport resistances in the ordered catalyst layer. In contrast, higher catalyst loading near membrane improves the cell performance significantly. The highest peak power density of 56.5 mW/cm2 is achieved, when the catalyst loading of the outer and inner layer is 0.15 mg/cm2 and 0.85 mg/cm2, respectively.

References

1.
Zou
,
C. N.
,
Zhao
,
Q.
,
Zhang
,
G. S.
, and
Xiong
,
B.
,
2016
, “
Energy Revolution: From a Fossil Energy Era to a New Energy Era
,”
Nat. Gas Ind. B
,
3
(
1
), pp.
1
11
.
2.
Li
,
L.
,
Yu
,
H. J.
,
Li
,
Y. S.
, and
He
,
Y.
,
2020
, “
Characteristics of the Transient Thermal Load and Deformation of the Evacuated Receiver in Solar Parabolic Trough Collector
,”
Sci. China: Technol. Sci.
,
63
(
7
), pp.
1180
1201
.
3.
Wang
,
R.
, and
Li
,
Y. S.
,
2020
, “
Carbon Electrodes Improving Electrochemical Activity and Enhancing Mass and Charge Transports in Aqueous Flow Battery: Status and Perspective
,”
Energy Storage Mater.
,
31
, pp.
230
251
.
4.
Seo
,
S. H.
, and
Lee
,
C. S.
,
2010
, “
A Study on the Overall Efficiency of Direct Methanol Fuel Cell by Methanol Crossover Current
,”
Appl. Energy
,
87
(
8
), pp.
2597
2604
.
5.
Kamarudin
,
S. K.
,
Achmad
,
F.
, and
Daud
,
W. R. W.
,
2009
, “
Overview on the Application of Direct Methanol Fuel Cell (DMFC) for Portable Electronic Devices
,”
Int. J. Hydrogen Energy
,
34
(
16
), pp.
6902
6916
.
6.
Wang
,
R.
,
Li
,
Y. S.
,
Liu
,
H. Y.
,
He
,
Y.
, and
Hao
,
M. S.
,
2021
, “
Sandwich-Like Multi-Scale Hierarchical Porous Carbon with Highly Hydroxylated Surface for Flow Batteries
,”
J. Mater. Chem. A
,
9
(
4
), pp.
2345
2356
. 10.1039/D0TA10284A
7.
Zhu
,
Y. L.
,
Liang
,
J. S.
,
Liu
,
C.
,
Ma
,
T. L.
, and
Wang L
,
D.
,
2009
, “
Development of a Passive Direct Methanol Fuel Cell (DMFC) Twin-Stack for Long-Term Operation
,”
J. Power Sources
,
193
(
2
), pp.
649
655
.
8.
Wang
,
R.
,
Li
,
Y. S.
,
Wang
,
Y. N.
, and
Fang
,
Z.
,
2020
, “
Phosphorus-Doped Graphite Felt Allowing Stabilized Electrochemical Interface and Hierarchical Pore Structure for Redox Flow Battery
,”
Appl. Energy
,
261
, p.
114369
.
9.
Kwok
,
Y. H.
,
Wang
,
Y. F.
,
Tsang
,
A. C. H.
, and
Leung
,
D. Y. C.
,
2018
, “
Graphene-Carbon Nanotube Composite Aerogel With Ru@Pt Nanoparticle as a Porous Electrode for Direct Methanol Microfluidic Fuel Cell
,”
Appl. Energy
,
217
, pp.
258
265
.
10.
Sun
,
X. D.
,
Li
,
Y. S.
, and
Li
,
M.
,
2019
, “
Highly Dispersed Palladium Nanoparticles on Carbon-Decorated Porous Nickel Electrode: An Effective Strategy to Boost Direct Ethanol Fuel Cell up to 202 mW cm−2
,”
ACS Sustainable Chem. Eng.
,
7
(
13
), pp.
11186
11193
.
11.
Zhu
,
S.
,
Wang
,
S. L.
,
Jiang
,
L. H.
,
Xia
,
Z. X.
,
Sun
,
H.
, and
Sun
,
G. Q.
,
2012
, “
High Pt Utilization Catalyst Prepared by Ion Exchange Method for Direct Methanol Fuel Cells
,”
Int. J. Hydrogen Energy
,
37
(
19
), pp.
14543
14548
.
12.
Jiang
,
J. H.
,
Li
,
Y. S.
,
Liang
,
J. R.
,
Yang
,
W. W.
, and
Li
,
X. L.
,
2019
, “
Modeling of High-Efficient Direct Methanol Fuel Cells With Order-Structured Catalyst Layer
,”
Appl. Energy
,
252
, p.
113431
.
13.
Du
,
C. Y.
,
Yin
,
G. P.
,
Cheng
,
X. Q.
, and
Shi
,
P. F.
,
2006
, “
Parametric Study of a Novel Cathode Catalyst Layer in Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
160
(
1
), pp.
224
231
.
14.
Du
,
C. Y.
,
Cheng
,
X. Q.
,
Yang
,
T.
,
Yin
,
G. P.
, and
Shi
,
P. F.
,
2005
, “
Numerical Simulation of the Ordered Catalyst Layer in Cathode of Proton Exchange Membrane Fuel Cells
,”
Electrochem. Commun.
,
7
(
12
), pp.
1411
1416
.
15.
Du
,
C. Y.
,
Yang
,
T.
,
Shi
,
P. F.
,
Yin
,
G. P.
, and
Cheng
,
X. Q.
,
2006
, “
Performance Analysis of the Ordered and the Conventional Catalyst Layers in Proton Exchange Membrane Fuel Cells
,”
Electrochim. Acta
,
51
(
23
), pp.
4934
4941
.
16.
Rao
,
S. M.
, and
Xing
,
Y. C.
,
2008
, “
Simulation of Nanostructured Electrodes for Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
,
185
(
2
), pp.
1094
1100
.
17.
Abediniab
,
A.
,
Dabirab
,
B.
, and
Kalbasia
,
M.
,
2012
, “
Experimental Verification for Simulation Study of Pt/CNT Nanostructured Cathode Catalyst Layer for PEM Fuel Cells
,”
Int. J. Hydrogen Energy
,
37
(
10
), pp.
8439
8450
.
18.
Hussain
,
M. M.
,
Song
,
D.
,
Liu
,
Z. S.
, and
Xie
,
Z.
,
2011
, “
Modeling an Ordered Nanostructured Cathode Catalyst Layer for Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
196
(
10
), pp.
4533
4544
.
19.
Zheng
,
J. S.
,
Dai
,
N. N.
,
Zhu
,
S. Y.
,
Gao
,
Y.
,
Ye
,
L. C.
,
Ma
,
J. X.
, and
Zheng
,
J. P.
,
2018
, “
Membrane Electrode Assembly Based on Buckypaper With Gradient Distribution of Platinum, Proton Conductor and Electrode Porosity
,”
J. Alloys Compd.
,
769
(
1
), pp.
471
477
.
20.
Deng
,
H.
,
Wang
,
D. W.
,
Wang
,
R. F.
,
Xie
,
X.
,
Yin
,
Y.
,
Du
,
Q.
, and
Jiao
,
K.
,
2016
, “
Effect of Electrode Design and Operating Condition on Performance of Hydrogen Alkaline Membrane Fuel Cell
,”
Appl. Energy
,
183
, pp.
1272
1278
.
21.
Deng
,
H.
,
Wang
,
D. W.
,
Xie
,
X.
,
Zhou
,
Y. B.
,
Yin
,
Y.
,
Du
,
Q.
, and
Jiao
,
K.
,
2016
, “
Modeling of Hydrogen Alkaline Membrane Fuel Cell With Interfacial Effect and Water Management Optimization
,”
Renewable Energy
,
91
, pp.
166
177
.
22.
Ting
,
G.
,
Sun
,
J.
,
Deng
,
H.
,
Xie
,
X.
,
Jiao
,
K.
, and
Huang
,
X. R.
,
2016
, “
Investigation of Cell Orientation Effect on Transient Operation of Passive Direct Methanol Fuel Cells
,”
Int. J. Hydrogen Energy
,
41
(
15
), pp.
6493
6507
.
23.
Yang
,
W. W.
, and
Zhao
,
T. S.
,
2007
, “
A Two-Dimensional, Two-Phase Mass Transport Model for Liquid-Feed DMFCs
,”
Electrochim. Acta
,
52
(
20
), pp.
6125
6140
.
24.
Yang
,
W. W.
,
Zhao
,
T. S.
, and
Xu
,
C.
,
2007
, “
Three-Dimensional Two-Phase Mass Transport Model for Direct Methanol Fuel Cells
,”
Electrochim. Acta
,
53
(
2
), pp.
853
862
.
25.
Yang
,
W. W.
, and
Zhao
,
T. S.
,
2007
, “
Two-Phase, Mass-Transport Model for Direct Methanol Fuel Cells With Effect of Non-Equilibrium Evaporation and Condensation
,”
J. Power Sources
,
174
(
1
), pp.
136
147
.
26.
Xia
,
Z. X.
,
Wang
,
S. L.
,
Jiang
,
L. H.
,
Sun
,
H.
, and
Sun
,
G. Q.
,
2014
, “
Controllable Synthesis of Vertically Aligned Polypyrrole Nanowires as Advanced Electrode Support for Fuel Cells
,”
J. Power Sources
,
256
, pp.
125
132
.
27.
Deng
,
H.
,
Jiao
,
D. K.
,
Zu
,
M.
,
Chen
,
J. X.
,
Jiao
,
K.
, and
Huang
,
X. R.
,
2015
, “
Modeling of Passive Alkaline Membrane Direct Methanol Fuel Cell
,”
Electrochim. Acta
,
154
, pp.
430
446
.
You do not currently have access to this content.