Abstract

Corncob is a biomass waste that has the second cutting-edge abundance on a global scale. As a low cost and feasible agricultural waste byproduct, corncob can be used in the energy sector to produce green and cheap energy. In this research, we used corncob as a raw material to make corncob-derived carbon composites (CDCCs) through a scalable and cost-effective calcination process, without the need of acidic or alkali treatments under different conditions. The obtained CDCC possesses a large number of micropores and mesopores having a slit-like shape. It showed outstanding long-term cycling stability up to 4000 cycles, maintaining stable specific capacity of 230 mA h/g at a current density of 500 mA/g. The obtained composite anode showed outstanding performance at a current density of 1000 mA/g, with specific capacity of around 200 mA h/g up to 10,000 cycles. This method can also be applied to other biomass wastes for sustainable use in different applications.

References

1.
Wu
,
H.
,
Yu
,
G.
,
Pan
,
L.
,
Liu
,
N.
,
McDowell
,
M. T.
,
Bao
,
Z.
, and
Cui
,
Y.
,
2013
, “
Stable Li-Ion Battery Anodes by in-Situ Polymerization of Conducting Hydrogel to Conformally Coat Silicon Nanoparticles
,”
Nat. Commun.
,
4
(
1
), p.
1943
.
2.
Su
,
X.
,
Wu
,
Q.
,
Li
,
J.
,
Xiao
,
X.
,
Lott
,
A.
,
Lu
,
W.
,
Sheldon
,
B. W.
, and
Wu
,
J.
,
2014
, “
Silicon-Based Nanomaterials for Lithium-Ion Batteries: A Review
,”
Adv. Energy Mater.
,
4
(
1
), p.
1300882
.
3.
Cheng
,
F.
,
Liang
,
J.
,
Tao
,
Z.
, and
Chen
,
J.
,
2011
, “
Functional Materials for Rechargeable Batteries
,”
Adv. Mater.
,
23
(
15
), pp.
1695
1715
.
4.
Aravindan
,
V.
,
Lee
,
Y. S.
, and
Madhavi
,
S.
,
2015
, “
Research Progress on Negative Electrodes for Practical Li-Ion Batteries: Beyond Carbonaceous Anodes
,”
Adv. Energy Mater.
,
5
(
13
), p.
1402225
.
5.
Tollefson
,
J.
,
2008
, “
Car Industry: Charging Up the Future
,”
Nature
,
456
(
7221
), pp.
436
440
.
6.
Zubi
,
G.
,
Dufo-López
,
R.
,
Carvalho
,
M.
, and
Pasaoglu
,
G.
,
2018
, “
The Lithium-Ion Battery: State of the Art and Future Perspectives
,”
Renew. Sustain. Energy Rev.
,
89
, pp.
292
308
.
7.
Cano
,
Z. P.
,
Banham
,
D.
,
Ye
,
S.
,
Hintennach
,
A.
,
Lu
,
J.
,
Fowler
,
M.
, and
Chen
,
Z.
,
2018
, “
Batteries and Fuel Cells for Emerging Electric Vehicle Markets
,”
Nat. Energy
,
3
(
4
), pp.
279
289
.
8.
Evarts
,
E. C.
,
2015
, “
Lithium Batteries: To the Limits of Lithium
,”
Nature
,
526
(
7575
), pp.
S93
S95
.
9.
Zang
,
X.
,
Shen
,
C.
,
Sanghadasa
,
M.
, and
Lin
,
L.
,
2019
, “
High-Voltage Supercapacitors Based on Aqueous Electrolytes
,”
ChemElectroChem
,
6
(
4
), pp.
976
988
.
10.
Yang
,
J.
,
Zhou
,
T.
,
Zhu
,
R.
,
Chen
,
X.
,
Guo
,
Z.
,
Fan
,
J.
,
Liu
,
H. K.
, and
Zhang
,
W.-X.
,
2016
, “
Highly Ordered Dual Porosity Mesoporous Cobalt Oxide for Sodium-Ion Batteries
,”
Adv. Mater. Interfaces
,
3
(
3
), p.
1500464
.
11.
Luo
,
W.
,
Chen
,
X.
,
Xia
,
Y.
,
Chen
,
M.
,
Wang
,
L.
,
Wang
,
Q.
,
Li
,
W.
, and
Yang
,
J.
,
2017
, “
Surface and Interface Engineering of Silicon-Based Anode Materials for Lithium-Ion Batteries
,”
Adv. Energy Mater.
,
7
(
24
), p.
1701083
.
12.
Manj
,
R. Z. A.
,
Chen
,
X.
,
Rehman
,
W. U.
,
Zhu
,
G.
,
Luo
,
W.
, and
Yang
,
J.
,
2018
, “
Big Potential From Silicon-Based Porous Nanomaterials: In Field of Energy Storage and Sensors
,”
Front. Chem.
,
6
(
539
).
13.
Zhu
,
G.
,
Zhang
,
F.
,
Li
,
X.
,
Luo
,
W.
,
Li
,
L.
,
Zhang
,
H.
,
Wang
,
L.
,
Wang
,
Y.
,
Jiang
,
W.
,
Liu
,
H. K.
,
Dou
,
S. X.
, and
Yang
,
J.
,
2019
, “
Engineering the Distribution of Carbon in Silicon Oxide Nanospheres at the Atomic Level for Highly Stable Anodes
,”
Angew. Chem. Int. Ed.
,
58
(
20
), pp.
6669
6673
.
14.
Zhang
,
F.
,
Zhu
,
G.
,
Wang
,
K.
,
Qian
,
X.
,
Zhao
,
Y.
,
Luo
,
W.
, and
Yang
,
J.
,
2019
, “
Boosting the Initial Coulombic Efficiency in Silicon Anodes Through Interfacial Incorporation of Metal Nanocrystals
,”
J. Mater. Chem. A
,
7
(
29
), pp.
17426
17434
.
15.
Rehman
,
W. U.
,
Wang
,
H.
,
Manj
,
R. Z. A.
,
Luo
,
W.
, and
Yang
,
J.
,
2021
, “
When Silicon Materials Meet Natural Sources: Opportunities and Challenges for Low-Cost Lithium Storage
,”
Small
,
17
(
9
), p.
1904508
.
16.
Wang
,
L.
,
Zheng
,
Y.
,
Wang
,
X.
,
Chen
,
S.
,
Xu
,
F.
,
Zuo
,
L.
,
Wu
,
J.
,
Sun
,
L.
,
Li
,
Z.
,
Hou
,
H.
, and
Song
,
Y.
,
2014
, “
Nitrogen-Doped Porous Carbon/Co3O4 Nanocomposites as Anode Materials for Lithium-Ion Batteries
,”
ACS Appl. Mater. Interfaces
,
6
(
10
), pp.
7117
7125
.
17.
Han
,
F.-D.
,
Yao
,
B.
, and
Bai
,
Y.-J.
,
2011
, “
Preparation of Carbon Nano-Onions and Their Application as Anode Materials for Rechargeable Lithium-Ion Batteries
,”
J. Phys. Chem. C
,
115
(
18
), pp.
8923
8927
.
18.
Wu
,
Y. P.
,
Rahm
,
E.
, and
Holze
,
R.
,
2003
, “
Carbon Anode Materials for Lithium Ion Batteries
,”
J. Power Sources
,
114
(
2
), pp.
228
236
.
19.
Yao
,
Y.
, and
Wu
,
F.
,
2015
, “
Naturally Derived Nanostructured Materials From Biomass for Rechargeable Lithium/Sodium Batteries
,”
Nano Energy
,
17
, pp.
91
103
.
20.
Ren
,
W.
,
Kong
,
D.
, and
Cheng
,
C.
,
2014
, “
Three-Dimensional Tin Nanoparticles Embedded in Carbon Nanotubes on Carbon Cloth as a Flexible Anode for Lithium-Ion Batteries
,”
ChemElectroChem
,
1
(
12
), pp.
2064
2069
.
21.
Zheng
,
F.
,
Liu
,
D.
,
Xia
,
G.
,
Yang
,
Y.
,
Liu
,
T.
,
Wu
,
M.
, and
Chen
,
Q.
,
2017
, “
Biomass Waste Inspired Nitrogen-Doped Porous Carbon Materials as High-Performance Anode for Lithium-Ion Batteries
,”
J. Alloys Compd.
,
693
, pp.
1197
1204
.
22.
Zhang
,
Y.
,
Zhang
,
F.
,
Li
,
G.-D.
, and
Chen
,
J.-S.
,
2007
, “
Microporous Carbon Derived From Pinecone Hull as Anode Material for Lithium Secondary Batteries
,”
Mater. Lett.
,
61
(
30
), pp.
5209
5212
.
23.
Long
,
W.
,
Fang
,
B.
,
Ignaszak
,
A.
,
Wu
,
Z.
,
Wang
,
Y.-J.
, and
Wilkinson
,
D.
,
2017
, “
Biomass-Derived Nanostructured Carbons and Their Composites as Anode Materials for Lithium Ion Batteries
,”
Chem. Soc. Rev.
,
46
(
23
), pp.
7176
7190
.
24.
Imtiaz
,
S.
,
Zhang
,
J.
,
Zafar
,
Z. A.
,
Ji
,
S.
,
Huang
,
T.
,
Anderson
,
J. A.
,
Zhang
,
Z.
, and
Huang
,
Y.
,
2016
, “
Biomass-Derived Nanostructured Porous Carbons for Lithium-Sulfur Batteries
,”
Sci. China Mater.
,
59
(
5
), pp.
389
407
.
25.
Liu
,
T.
, and
Li
,
X.
,
2019
, “
Biomass-Derived Nanostructured Porous Carbons for Sodium Ion Batteries: A Review
,”
Mater. Technol.
,
34
(
4
), pp.
232
245
.
26.
Deng
,
J.
,
Li
,
M.
, and
Wang
,
Y.
,
2016
, “
Biomass-Derived Carbon: Synthesis and Applications in Energy Storage and Conversion
,”
Green Chem.
,
18
(
18
), pp.
4824
4854
.
27.
Wang
,
J.
,
Nie
,
P.
,
Ding
,
B.
,
Dong
,
S.
,
Hao
,
X.
,
Dou
,
H.
, and
Zhang
,
X.
,
2017
, “
Biomass Derived Carbon for Energy Storage Devices
,”
J. Mater. Chem. A
,
5
(
6
), pp.
2411
2428
.
28.
Saravanan
,
K. R.
, and
Kalaiselvi
,
N.
,
2015
, “
Nitrogen Containing Bio-Carbon as a Potential Anode for Lithium Batteries
,”
Carbon
,
81
, pp.
43
53
.
29.
Chen
,
L.
,
Zhang
,
Y.
,
Lin
,
C.
,
Yang
,
W.
,
Meng
,
Y.
,
Guo
,
Y.
,
Li
,
M.
, and
Xiao
,
D.
,
2014
, “
Hierarchically Porous Nitrogen-Rich Carbon Derived From Wheat Straw as an Ultra-High-Rate Anode for Lithium Ion Batteries
,”
J. Mater. Chem. A
,
2
(
25
), pp.
9684
9690
.
30.
Sun
,
X.
,
Wang
,
X.
,
Feng
,
N.
,
Qiao
,
L.
,
Li
,
X.
, and
He
,
D.
,
2013
, “
A New Carbonaceous Material Derived From Biomass Source Peels as an Improved Anode for Lithium Ion Batteries
,”
J. Anal. Appl. Pyrolysis
,
100
, pp.
181
185
.
31.
Hwang
,
Y. J.
,
Jeong
,
S. K.
,
Shin
,
J. S.
,
Nahm
,
K. S.
, and
Stephan
,
A. M.
,
2008
, “
High Capacity Disordered Carbons Obtained From Coconut Shells as Anode Materials for Lithium Batteries
,”
J. Alloys Compd.
,
448
(
1
), pp.
141
147
.
32.
Fey
,
G. T.-K.
, and
Chen
,
C.-L.
,
2001
, “
High-Capacity Carbons for Lithium-Ion Batteries Prepared From Rice Husk
,”
J. Power Sources
,
97–98
, pp.
47
51
.
33.
Li
,
Y.
,
Huang
,
Y.
,
Song
,
K.
,
Wang
,
X.
,
Yu
,
K.
, and
Liang
,
C.
,
2019
, “
Rice Husk Lignin-Derived Porous Carbon Anode Material for Lithium-Ion Batteries
,”
ChemistrySelect
,
4
(
14
), pp.
4178
4184
.
34.
Han
,
S.-W.
,
Jung
,
D.-W.
,
Jeong
,
J.-H.
, and
Oh
,
E.-S.
,
2014
, “
Effect of Pyrolysis Temperature on Carbon Obtained From Green Tea Biomass for Superior Lithium Ion Battery Anodes
,”
Chem. Eng. J.
,
254
, pp.
597
604
.
35.
Sankar
,
S.
,
Saravanan
,
S.
,
Ahmed
,
A. T. A.
,
Inamdar
,
A. I.
,
Im
,
H.
,
Lee
,
S.
, and
Kim
,
D. Y.
,
2019
, “
Spherical Activated-Carbon Nanoparticles Derived From Biomass Green Tea Wastes for Anode Material of Lithium-Ion Battery
,”
Mater. Lett.
,
240
, pp.
189
192
.
36.
Yu
,
X.
,
Zhang
,
K.
,
Tian
,
N.
,
Qin
,
A.
,
Liao
,
L.
,
Du
,
R.
, and
Wei
,
C.
,
2015
, “
Biomass Carbon Derived From Sisal Fiber as Anode Material for Lithium-Ion Batteries
,”
Mater. Lett.
,
142
, pp.
193
196
.
37.
Um
,
J. H.
,
Ahn
,
C.-Y.
,
Kim
,
J.
,
Jeong
,
M.
,
Sung
,
Y.-E.
,
Cho
,
Y.-H.
,
Kim
,
S.-S.
, and
Yoon
,
W.-S.
,
2018
, “
From Grass to Battery Anode: Agricultural Biomass Hemp-Derived Carbon for Lithium Storage
,”
RSC Adv.
,
8
(
56
), pp.
32231
32240
.
38.
Liu
,
T.
,
Luo
,
R.
,
Qiao
,
W.
,
Yoon
,
S.-H.
, and
Mochida
,
I.
,
2010
, “
Microstructure of Carbon Derived From Mangrove Charcoal and Its Application in Li-Ion Batteries
,”
Electrochim. Acta
,
55
(
5
), pp.
1696
1700
.
39.
Wan
,
H.
, and
Hu
,
X.
,
2019
, “
Nitrogen Doped Biomass-Derived Porous Carbon as Anode Materials of Lithium Ion Batteries
,”
Solid State Ion.
,
341
, p.
115030
.
40.
Etacheri
,
V.
,
Hong
,
C. N.
, and
Pol
,
V. G.
,
2015
, “
Upcycling of Packing-Peanuts Into Carbon Microsheet Anodes for Lithium-Ion Batteries
,”
Environ. Sci. Technol.
,
49
(
18
), pp.
11191
11198
.
41.
Kali
,
R.
,
Padya
,
B.
,
Rao
,
T. N.
, and
Jain
,
P. K.
,
2019
, “
Solid Waste-Derived Carbon as Anode for High Performance Lithium-Ion Batteries
,”
Diam. Relat. Mater.
,
98
, p.
107517
.
42.
Kakunuri
,
M.
, and
Sharma
,
C. S.
,
2015
, “
Candle Soot Derived Fractal-Like Carbon Nanoparticles Network as High-Rate Lithium Ion Battery Anode Material
,”
Electrochim. Acta
,
180
, pp.
353
359
.
43.
Duan
,
F.
,
Chyang
,
C.-S.
, and
Tso
,
J.
,
2014
, “
Comparison of Combustion Behaviors and Pollutant Emissions Using Bituminous Coal and Corncob in a Fluidized Bed Combustor
,”
Asia-Pac. J. Chem. Eng.
,
9
(
5
), pp.
718
725
.
44.
Ma
,
H.
,
Li
,
J.-B.
,
Liu
,
W.-W.
,
Miao
,
M.
,
Cheng
,
B.-J.
, and
Zhu
,
S.-W.
,
2015
, “
Novel Synthesis of a Versatile Magnetic Adsorbent Derived From Corncob for Dye Removal
,”
Bioresour. Technol.
,
190
, pp.
13
20
.
45.
Hu
,
H.
,
Liang
,
W.
,
Zhang
,
Y.
,
Wu
,
S.
,
Yang
,
Q.
,
Wang
,
Y.
,
Zhang
,
M.
, and
Liu
,
Q.
,
2018
, “
Multipurpose Use of a Corncob Biomass for the Production of Polysaccharides and the Fabrication of a Biosorbent
,”
ACS Sustain. Chem. Eng.
,
6
(
3
), pp.
3830
3839
.
46.
Gupta
,
G. K.
,
Ram
,
M.
,
Bala
,
R.
,
Kapur
,
M.
, and
Mondal
,
M. K.
,
2018
, “
Pyrolysis of Chemically Treated Corncob for Biochar Production and Its Application in Cr(VI) Removal
,”
Environ. Prog. Sustain. Energy
,
37
(
5
), pp.
1606
1617
.
47.
Sonobe
,
T.
,
Worasuwannarak
,
N.
, and
Pipatmanomai
,
S.
,
2008
, “
Synergies in co-Pyrolysis of Thai Lignite and Corncob
,”
Fuel Process. Technol.
,
89
(
12
), pp.
1371
1378
.
48.
Chen
,
G.
,
Zheng
,
Z.
,
Yang
,
S.
,
Fang
,
C.
,
Zou
,
X.
, and
Luo
,
Y.
,
2010
, “
Experimental Co-Digestion of Corn Stalk and Vermicompost to Improve Biogas Production
,”
Waste Manage.
,
30
(
10
), pp.
1834
1840
.
49.
Ou
,
J.
,
Yang
,
L.
, and
Xi
,
X.
,
2016
, “
Biomass Inspired Nitrogen Doped Porous Carbon Anode With High Performance for Lithium Ion Batteries
,”
Chin. J. Chem. Phys.
,
34
(
7
), pp.
727
732
.
50.
Ostyn
,
N. R.
,
Steele
,
J. A.
,
De Prins
,
M.
,
Sree
,
S. P.
,
Chandran
,
C. V.
,
Wangermez
,
W.
,
Vanbutsele
,
G.
,
Seo
,
J. W.
,
Roeffaers
,
M. B.
, and
Breynaert
,
E.
,
2019
, “
Low-Temperature Activation of Carbon Black by Selective Photocatalytic Oxidation
,”
Nanoscale Adv.
,
1
(
8
), pp.
2873
2880
.
51.
Su
,
Y.-S.
, and
Manthiram
,
A.
,
2012
, “
Lithium–Sulphur Batteries With a Microporous Carbon Paper as a Bifunctional Interlayer
,”
Nat. Commun.
,
3
(
1
), p.
1166
.
52.
Kruk
,
M.
, and
Jaroniec
,
M.
,
2001
, “
Gas Adsorption Characterization of Ordered Organic–Inorganic Nanocomposite Materials
,”
Chem. Mater.
,
13
(
10
), pp.
3169
3183
.
53.
Zheng
,
P.
,
Liu
,
T.
,
Zhang
,
J.
,
Zhang
,
L.
,
Liu
,
Y.
,
Huang
,
J.
, and
Guo
,
S.
,
2015
, “
Sweet Potato-Derived Carbon Nanoparticles as Anode for Lithium Ion Battery
,”
RSC Adv.
,
5
(
51
), pp.
40737
40741
.
54.
Liu
,
J.
,
Kopold
,
P.
,
van Aken
,
P. A.
,
Maier
,
J.
, and
Yu
,
Y.
,
2015
, “
Energy Storage Materials From Nature Through Nanotechnology: A Sustainable Route From Reed Plants to a Silicon Anode for Lithium-Ion Batteries
,”
Angew. Chem.
,
127
(
33
), pp.
9768
9772
.
55.
Shi
,
L.
,
Wang
,
W.
,
Wang
,
A.
,
Yuan
,
K.
, and
Yang
,
Y.
,
2014
, “
Facile Synthesis of Scalable Pore-Containing Silicon/Nitrogen-Rich Carbon Composites From Waste Contact Mass of Organosilane Industry as Anode Materials for Lithium-Ion Batteries
,”
J. Mater. Chem. A
,
2
(
47
), pp.
20213
20220
.
56.
Zhang
,
F.
,
Zhu
,
G.
,
Wang
,
K.
,
Li
,
M.
, and
Yang
,
J.
,
2019
, “
Encapsulation of Core–Satellite Silicon in Carbon for Rational Balance of the Void Space and Capacity
,”
Chem. Commun.
,
55
, pp.
10531
10534
.
57.
Hu
,
X.
,
Sun
,
X.
,
Yoo
,
S. J.
,
Evanko
,
B.
,
Fan
,
F.
,
Cai
,
S.
,
Zheng
,
C.
,
Hu
,
W.
, and
Stucky
,
G. D.
,
2019
, “
Nitrogen-Rich Hierarchically Porous Carbon as a High-Rate Anode Material With Ultra-Stable Cyclability and High Capacity for Capacitive Sodium-Ion Batteries
,”
Nano Energy
,
56
, pp.
828
839
.
You do not currently have access to this content.