Abstract

The working state of lithium-ion batteries must be estimated accurately and efficiently in the battery management system. Building a model is the most prevalent way of predicting the battery's working state. Based on the variable order equivalent circuit model, this article examines the attenuation curve of battery capacity with the number of cycles. It identifies the order of the equivalent circuit model using Bayesian information criterion (BIC). Based on the correlation between capacity and resistance, this article concludes that there is a nonlinear correlation between model parameters and state of health (SOH). The nonlinear autoregressive neural network with exogenous input (NARX) is used to fit the nonlinear correlation for capacity regeneration. Then, the self-adaptive weight particle swarm optimization (SWPSO) method is suggested to train the neural network. Finally, single-battery and multibattery tests are planned to validate the accuracy of the SWPSO-NARX estimate of SOH. The experimental findings indicate that the SOH estimate effect is significant.

References

1.
Rahimi-Eichi
,
H.
,
Ojha
,
U.
,
Baronti
,
F.
, and
Chow
,
M.-Y.
,
2013
, “
Battery Management System: An Overview of Its Application in the Smart Grid and Electric Vehicles
,”
IEEE Ind. Electron. Mag.
,
7
(
2
), pp.
4
16
.
2.
Li
,
J.
,
Li
,
Y.
,
Lyu
,
C.
,
Zhao
,
W.
, and
Zhou
,
J.
,
2020
, “
Key Technology and Research Status of Cascaded Utilization in Decommissioned Power Battery
,”
Dianli Xitong Zidonghua/Autom. Electr. Power Syst.
,
44
(
13
), pp.
172
183
.
3.
Park
,
S.
,
Ahn
,
J.
,
Kang
,
T.
,
Park
,
S.
,
Kim
,
Y.
,
Cho
,
I.
, and
Kim
,
J.
,
2020
, “
Review of State-of-the-Art Battery State Estimation Technologies for Battery Management Systems of Stationary Energy Storage Systems
,”
J. Power Electron.
,
20
(
6
), pp.
1526
1540
.
4.
Lin
,
C.-P.
,
Cabrera
,
J.
,
Yang
,
F.
,
Ling
,
M.-H.
,
Tsui
,
K.-L.
, and
Bae
,
S.-J.
,
2020
, “
Battery State of Health Modeling and Remaining Useful Life Prediction Through Time Series Model
,”
Appl. Energy
,
275
, p.
115338
.
5.
Tian
,
H.
,
Qin
,
P.
,
Li
,
K.
, and
Zhao
,
Z.
,
2020
, “
A Review of the State of Health for Lithium-Ion Batteries: Research Status and Suggestions
,”
J. Cleaner Prod.
,
261
, p.
120813
.
6.
Li
,
Y.
,
Abdel-Monem
,
M.
,
Gopalakrishnan
,
R.
,
Berecibar
,
M.
,
Nanini-Maury
,
E.
,
Omar
,
N.
,
van den Bossche
,
P.
, and
Van Mierlo
,
J.
,
2018
, “
A Quick On-Line State of Health Estimation Method for Li-Ion Battery With Incremental Capacity Curves Processed by Gaussian Filter
,”
J. Power Sources
,
373
, pp.
40
53
.
7.
Yang
,
Q.
,
Xu
,
J.
,
Li
,
X.
,
Xu
,
D.
, and
Cao
,
B.
,
2020
, “
State-of-Health Estimation of Lithium-Ion Battery Based on Fractional Impedance Model and Interval Capacity
,”
Int. J. Electr. Power Energy Syst.
,
119
, p.
105883
.
8.
Wei
,
H.
,
Chen
,
X.
,
Zhiqiang
,
L.
,
Wang
,
Z.
,
Pan
,
H.
, and
L
,
C.
,
2017
, “
Online Estimation of Lithium-Ion Battery State of Health Using Grey Neural Network
,”
Dianwang Jishu Power Syst. Technol.
,
41
(
12
), pp.
4038
4044
.
9.
You
,
G.-w.
,
Park
,
S.
, and
Oh
,
D.
,
2016
, “
Real-Time State-of-Health Estimation for Electric Vehicle Batteries: A Data-Driven Approach
,”
Appl. Energy
,
176
, pp.
92
103
.
10.
Tian
,
J.
,
Xiong
,
R.
, and
Shen
,
W.
,
2020
, “
State-of-Health Estimation Based on Differential Temperature for Lithium Ion Batteries
,”
IEEE Trans. Power Electron.
,
35
(
10
), pp.
10363
10373
.
11.
Liu
,
D.
,
Zhou
,
J.
,
Liao
,
H.
,
Peng
,
Y.
, and
Peng
,
X.
,
2015
, “
A Health Indicator Extraction and Optimization Framework for Lithium-Ion Battery Degradation Modeling and Prognostics
,”
IEEE Trans. Syst. Man Cybernet.: Syst.
,
45
(
6
), pp.
915
928
.
12.
Guo
,
P.
,
Cheng
,
Z.
, and
Yang
,
L.
,
2019
, “
A Data-Driven Remaining Capacity Estimation Approach for Lithium-Ion Batteries Based on Charging Health Feature Extraction
,”
J. Power Sources
,
412
, pp.
442
450
.
13.
Cai
,
L.
,
Meng
,
J.
,
Stroe
,
D.-I.
,
Peng
,
J.
,
Luo
,
G.
, and
Teodorescu
,
R.
,
2020
, “
Multiobjective Optimization of Data-Driven Model for Lithium-Ion Battery SOH Estimation With Short-Term Feature
,”
IEEE Trans. Power Electron.
,
35
(
11
), pp.
11855
11864
.
14.
Shen
,
S.
,
Sadoughi
,
M.
,
Chen
,
X.
,
Hong
,
M.
, and
Hu
,
C.
,
2019
, “
A Deep Learning Method for Online Capacity Estimation of Lithium-Ion Batteries
,”
J. Energy Storage
,
25
, p.
100817
.
15.
Li
,
C.
,
Xiao
,
F.
,
Fan
,
Y.
,
Tang
,
X.
, and
Yang
,
G.
,
2021
, “
Joint Estimation of the State of Charge and the State of Health Based on Deep Learning for Lithium-ion Batteries
,”
Proceedings of the Chinese Society of Electrical Engineering
,
41
(
2
), pp.
681
691
.
16.
Fleischer
,
C.
,
Waag
,
W.
,
Bai
,
Z.
, and
Sauer
,
D. U.
,
2013
, “
Adaptive On-Line State-of-Available-Power Prediction of Lithium-Ion Batteries
,”
J. Power Electron.
,
13
(
4
), pp.
516
527
.
17.
Zhang
,
W.
, and
Wang
,
W.
,
2018
, “
Lithium–Ion Battery SoC Estimation Based on Online Support Vector Regression
,”
Proceedings—2018 33rd Youth Academic Annual Conference of Chinese Association of Automation, YAC 2018
,
Nanjing, China
,
May 18–20
, pp.
564
568
.
18.
Lei
,
X.
,
Chan
,
C. C.
,
Liu
,
K.
, and
Ma
,
L.
,
2008
, “
Radial-Based-Function Neural Network Based SOC Estimation for Electric Vehicles
,”
Trans. China Electrotech. Soc.
,
23
(
5
), pp.
81
87
.
19.
Tian
,
L.
, and
Collins
,
C.
,
2004
, “
A Dynamic Recurrent Neural Network-Based Controller for a Rigid-Flexible Manipulator System
,”
Mechatron.
,
14
(
5
), pp.
471
490
.
20.
Chaoui
,
H.
, and
Ibe-Ekeocha
,
C. C.
,
2017
, “
State of Charge and State of Health Estimation for Lithium Batteries Using Recurrent Neural Networks
,”
IEEE Trans. Veh. Technol.
,
66
(
10
), pp.
8773
8783
.
21.
Couto
,
L. D.
,
Schorsch
,
J.
,
Job
,
N.
,
Léonard
,
A.
, and
Kinnaert
,
M.
,
2019
, “
State of Health Estimation for Lithium ion Batteries Based on an Equivalent-Hydraulic Model: An Iron Phosphate Application
,”
J. Energy Storage
,
21
, pp.
259
271
.
22.
Liu
,
C.
,
Wang
,
Y.
, and
Chen
,
Z.
,
2019
, “
Degradation Model and Cycle Life Prediction for Lithium-Ion Battery Used in Hybrid Energy Storage System
,”
Energy
,
166
, pp.
796
806
.
23.
Doyle
,
M.
,
Fuller
,
T.
, and
Newman
,
J.
,
1993
, “
Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell
,”
J. Electrochem. Soc.
,
140
(
6
), pp.
1526
1533
.
24.
Pang
,
H.
,
Mou
,
L.
,
Guo
,
L.
, and
Zhang
,
F.
,
2019
, “
Parameter Identification and Systematic Validation of an Enhanced Single-Particle Model With Aging Degradation Physics for Li-Ion Batteries
,”
Electrochim. Acta
,
307
, pp.
474
487
.
25.
Xing
,
Y.
,
Ma
,
E. W. M.
,
Tsui
,
K.-L.
, and
Pecht
,
M.
,
2013
, “
An Ensemble Model for Predicting the Remaining Useful Performance of Lithium-Ion Batteries
,”
Microelectron. Reliab.
,
53
(
6
), pp.
811
820
.
26.
Qin
,
W.
,
Lv
,
H.
,
Liu
,
C.
,
Nirmalya
,
D.
, and
Jahanshahi
,
P.
,
2019
, “
Remaining Useful Life Prediction for Lithium-Ion Batteries Using Particle Filter and Artificial Neural Network
,”
Ind. Manag. Data Syst.
,
120
(
2
), pp.
312
328
.
27.
Tseng
,
K.-H.
,
Liang
,
J.-W.
,
Chang
,
W.
, and
Huang
,
S.-C.
,
2015
, “
Regression Models Using Fully Discharged Voltage and Internal Resistance for State of Health Estimation of Lithium-Ion Batteries
,”
Energies
,
8
(
4
), pp.
2889
2907
.
28.
Wang
,
D.
,
Miao
,
Q.
, and
Pecht
,
M.
,
2013
, “
Prognostics of Lithium-Ion Batteries Based on Relevance Vectors and a Conditional Three-Parameter Capacity Degradation Model
,”
J. Power Sources
,
239
, pp.
253
264
.
29.
Han
,
X.
,
Ouyang
,
M.
,
Lu
,
L.
, and
Li
,
J.
,
2014
, “
A Comparative Study of Commercial Lithium Ion Battery Cycle Life in Electric Vehicle: Capacity Loss Estimation
,”
J. Power Sources
,
268
, pp.
658
669
.
30.
Ayeng'o
,
S. P.
,
Schirmer
,
T.
,
Kairies
,
K. P.
,
Axelsen
,
H.
, and
Sauer
,
D. U.
,
2018
, “
Comparison of Off-Grid Power Supply Systems Using Lead-Acid and Lithium-Ion Batteries
,”
Sol. Energy
,
162
, pp.
140
152
.
31.
Hua
,
Y.
,
Cordoba-Arenas
,
A.
,
Warner
,
N.
, and
Rizzoni
,
G.
,
2015
, “
A Multi Time-Scale State-of-Charge and State-of-Health Estimation Framework Using Nonlinear Predictive Filter for Lithium-Ion Battery Pack With Passive Balance Control
,”
J. Power Sources
,
280
, pp.
293
312
.
32.
Kim
,
J.
,
Lee
,
S.
, and
Cho
,
B. H.
,
2012
, “
Complementary Cooperation Algorithm Based on DEKF Combined With Pattern Recognition for SOC/Capacity Estimation and SOH Prediction
,”
IEEE Trans. Power Electron.
,
27
(
1
), pp.
436
451
.
33.
Xu
,
M.
,
Deng
,
J.
, and
Quan
,
S.
,
2016
, “
SOC Estimation of Lithium Battery Based on Improved Kalman Filtering Algorithm
,”
Proceedings—2016 International Conference on Industrial Informatics—Computing Technology, Intelligent Technology, Industrial Information Integration, ICIICII 2016
,
Wuhan, Hubei, China
,
Dec. 3–4
, pp.
298
302
.
34.
Miao
,
Q.
,
Xie
,
L.
,
Cui
,
H.
,
Liang
,
W.
, and
Pecht
,
M.
,
2013
, “
Remaining Useful Life Prediction of Lithium-Ion Battery With Unscented Particle Filter Technique
,”
Microelectron. Reliab.
,
53
(
6
), pp.
805
810
.
35.
Sepasi
,
S.
,
Roose
,
L. R.
, and
Matsuura
,
M. M.
,
2015
, “
Extended Kalman Filter With a Fuzzy Method for Accurate Battery Pack State of Charge Estimation
,”
Energies
,
8
(
6
), pp.
5217
5233
.
36.
Hu
,
Y.
, and
Yurkovich
,
S.
,
2010
, “
Battery State of Charge Estimation in Automotive Applications Using LPV Techniques
,”
Proceedings of the 2010 American Control Conference, ACC 2010
,
Baltimore, MD
,
June 30–July 2
, pp.
5043
5049
.
37.
Chen
,
M.
,
Wu
,
J.
,
Jiao
,
C.
,
Chen
,
J.
, and
Zhang
,
Z.
,
2020
, “
Multi-Factor Online Estimation Method for Health Status of Lithium-Ion Battery
,”
Hsi-An Chiao Tung Ta Hsueh/J. Xi'an Jiaotong Univ.
,
54
(
1
), pp.
169
175
.
38.
Wang
,
H.
,
Wang
,
Y.
,
Yu
,
Z.
, and
Li
,
R.
,
2019
, “
Estimation of Battery Health Based on Improved Unscented Kalman Filtering Algorithm
,”
Int. J. Performability Eng.
,
15
(
5
), pp.
1482
1490
.
39.
Zhang
,
Y.
, and
Wang
,
C. Y.
,
2009
, “
Cycle-Life Characterization of Automotive Lithium-Ion Batteries With LiNiO2 Cathode
,”
J. Electrochem. Soc.
,
156
(
7
), pp.
527
A535
.
40.
Lama
,
N.
,
Boracchi
,
P.
, and
Biganzoli
,
E.
,
2009
, “
Exploration of Distributional Models for a Novel Intensity-Dependent Normalization Procedure in Censored Gene Expression Data
,”
Comput. Stat. Data Anal.
,
53
(
5
), pp.
1906
1922
.
41.
Dünder
,
E.
,
Gümüştekin
,
S.
,
Murat
,
N.
, and
Cengiz
,
M. A.
,
2017
, “
Subset Selection in Quantile Regression Analysis via Alternative Bayesian Information Criteria and Heuristic Optimization
,”
Commun. Stat. Theory Methods
,
46
(
22
), pp.
11091
11098
.
42.
Saha
,
B.
,
Goebel
,
K.
, and
Christophersen
,
J.
,
2009
, “
Comparison of Prognostic Algorithms for Estimating Remaining Useful Life of Batteries
,”
Trans. Inst. Meas. Control
,
31
(
3–4
), pp.
293
308
.
43.
Rehman
,
O. U.
,
Tu
,
S.
,
Rehman
,
S. U.
,
Khan
,
S.
, and
Yang
,
S.
,
2018
, “
Design Optimization of Electromagnetic Devices Using an Improved Quantum Inspired Particle Swarm Optimizer
,”
Appl. Comput. Electromagn. Soc. J.
,
33
(
9
), pp.
951
956
.
You do not currently have access to this content.