Abstract

Magnesium ion battery (MIB) has gradually become a research hotspot because of a series of advantages of environmental protection and safety. Still, magnesium ion battery lacks cathode materials with high energy density and rate capacity, which influences the electrochemical properties of magnesium ion battery. This paper selects KMnO4 as an oxidant and the divalent salt of Mn2+ as a reducing agent. The α-MnO2/Ti3C2, β-MnO2/Ti3C2, and γ-MnO2/Ti3C2 were prepared by means of hydrothermal synthesis; at the same time, the ratio of MnO2 and Ti3C2 was adjusted. The effects of the different crystal structures of MnO2 on the microstructure and electrochemical properties of MnO2/Ti3C2 composites with different proportions were studied. The results show that the MnO2 crystal structure has a significant influence on the microstructure of the electrode material. The α-MnO2 is uniformly distributed in the composite, providing more transmission paths for magnesium ions. Besides, we found that when α-MnO2 and Ti3C2 are in the proportion of 1:2, the electrochemical performance is optimal, and its capacity can reach 125 mA h g−1, which is 140% of the γ-MnO2 crystal structure.

References

1.
Yoshio
,
M.
,
Brodd
,
R. J.
, and
Kozawa
,
A.
,
2009
,
Lithium-Ion Batteries
, Vol. 1,
Springer
,
New York
, pp.
2
3
.
2.
Kang
,
K.
,
Meng
,
Y. S.
,
Breger
,
J.
,
Grey
,
C. P.
, and
Ceder
,
G.
,
2006
, “
Electrodes With High Power and High Capacity for Rechargeable Lithium Batteries
,”
Science
,
311
(
5763
), pp.
977
980
.
3.
Levi
,
E.
,
Gofer
,
Y.
, and
Aurbach
,
D.
,
2010
, “
On the Way to Rechargeable Mg Batteries: The Challenge of New Cathode Materials
,”
Chem. Mater.
,
22
(
3
), pp.
860
868
.
4.
Singh
,
N.
,
Arthur
,
T. S.
,
Ling
,
C.
,
Matsui
,
M.
, and
Mizuno
,
F.
,
2013
, “
A High Energy-Density Tin Anode for Rechargeable Magnesium-Ion Batteries
,”
Chem. Commun.
,
49
(
2
), pp.
149
151
.
5.
Crowther
,
O.
, and
West
,
A. C.
,
2008
, “
Effect of Electrolyte Composition on Lithium Dendrite Growth
,”
J. Electrochem. Soc.
,
155
(
11
), p.
A806
.
6.
Matsui
,
M.
,
2011
, “
Study on Electrochemically Deposited Mg Metal
,”
J. Power Sources
,
196
(
16
), pp.
7048
7055
.
7.
Saha
,
P.
,
Datta
,
M. K.
,
Velikokhatnyi
,
O. I.
,
Manivannan
,
A.
,
Alman
,
D.
, and
Kumta
,
P. N.
,
2014
, “
Rechargeable Magnesium Battery: Current Status and Key Challenges for the Future
,”
Prog. Mater. Sci.
,
66
, pp.
1
86
.
8.
Doe
,
R. E.
,
Han
,
R.
,
Hwang
,
J.
,
Gmitter
,
A. J.
,
Shterenberg
,
I.
,
Yoo
,
H. D.
,
Pour
,
N.
, and
Aurbach
,
D.
,
2014
, “
Novel, Electrolyte Solutions Comprising Fully Inorganic Salts With High Anodic Stability for Rechargeable Magnesium Batteries
,”
Chem. Commun.
,
50
(
2
), pp.
243
245
.
9.
Zeng
,
J.
,
Yang
,
Y.
,
Li
,
C.
,
Li
,
J.
,
Huang
,
J.
,
Wang
,
J.
, and
Zhao
,
J.
,
2017
, “
Li3VO4: An Insertion Anode Material for Magnesium Ion Batteries With High Specific Capacity
,”
Electrochim. Acta
,
247
, pp.
265
270
.
10.
Huie
,
M. M.
,
Bock
,
D. C.
,
Takeuchi
,
E. S.
,
Marschilok
,
A. C.
, and
Takeuchi
,
K. J.
,
2015
, “
Cathode Materials for Magnesium and Magnesium-Ion Based Batteries
,”
Coord. Chem. Rev.
,
287
, pp.
15
27
.
11.
Pan
,
B.
,
Huang
,
J.
,
Feng
,
Z.
,
Zeng
,
L.
,
He
,
M.
,
Zhang
,
L.
,
Vaughey
,
J. T.
, et al
,
2016
, “
Polyanthraquinone-Based Organic Cathode for High-Performance Rechargeable Magnesium-Ion Batteries
,”
Adv. Energy Mater.
,
6
(
14
), p.
1600140
.
12.
Bitenc
,
J.
,
Pirnat
,
K.
,
Bančič
,
T.
,
Gaberšček
,
M.
,
Genorio
,
B.
,
Randon-Vitanova
,
A.
, and
Dominko
,
R.
,
2015
, “
Anthraquinone-Based Polymer as Cathode in Rechargeable Magnesium Batteries
,”
ChemSusChem
,
8
(
24
), pp.
4128
4132
.
13.
Massé
,
R. C.
,
Uchaker
,
E.
, and
Cao
,
G.
,
2015
, “
Beyond Li-Ion: Electrode Materials for Sodium- and Magnesium-Ion Batteries
,”
Sci. China Mater.
,
58
(
9
), pp.
715
766
.
14.
Jäckle
,
M.
, and
Groß
,
A.
,
2014
, “
Microscopic Properties of Lithium, Sodium, and Magnesium Battery Anode Materials Related to Possible Dendrite Growth
,”
J. Chem. Phys.
,
141
(
17
), p.
174710
.
15.
Lu
,
Z.
,
Schechter
,
A.
,
Moshkovich
,
M.
, and
Aurbach
,
D.
,
1999
, “
On the Electrochemical Behavior of Magnesium Electrodes in Polar Aprotic Electrolyte Solutions
,”
J. Electroanal. Chem.
,
466
(
2
), pp.
203
217
.
16.
Tepavcevic
,
S.
,
Liu
,
Y.
,
Zhou
,
D.
,
Lai
,
B.
,
Maser
,
J.
,
Zuo
,
X.
,
Chan
,
H.
, et al
,
2015
, “
Nanostructured Layered Cathode for Rechargeable Mg-Ion Batteries
,”
ACS Nano
,
9
(
8
), pp.
8194
8205
.
17.
Zhang
,
R.
,
Arthur
,
T. S.
,
Ling
,
C.
, and
Mizuno
,
F.
,
2015
, “
Manganese Dioxides as Rechargeable Magnesium Battery Cathode; Synthetic Approach to Understand Magnesiation Process
,”
J. Power Sources
,
282
, pp.
630
638
.
18.
Gautam
,
G. S.
,
Sun
,
X.
,
Duffort
,
V.
,
Nazar
,
L. F.
, and
Ceder
,
G.
,
2016
, “
Impact of Intermediate Sites on Bulk Diffusion Barriers: Mg Intercalation in Mg2Mo3O8
,”
J. Mater. Chem. A
,
4
(
45
), pp.
17643
17648
.
19.
Zhang
,
M.
,
MacRae
,
A. C.
, and
Meng
,
Y. S.
,
2016
, “
Communication—Investigation of Anatase-TiO2- as an Efficient Electrode Material for Magnesium-Ion Batteries
,”
J. Electrochem. Soc.
,
163
(
10
), p.
A2368
.
20.
Zhang
,
R.
,
Ling
,
C.
, and
Mizuno
,
F.
,
2015
, “
A Conceptual Magnesium Battery With Ultrahigh Rate Capability
,”
Chem. Commun.
,
51
(
8
), pp.
1487
1490
.
21.
Sun
,
X.
,
Bonnick
,
P.
,
Duffort
,
V.
,
Liu
,
M.
,
Rong
,
Z.
,
Persson
,
K. A.
,
Ceder
,
G.
, and
Nazar
,
L. F.
,
2016
, “
A High Capacity Thiospinel Cathode for Mg Batteries
,”
Energy Environ. Sci.
,
9
(
7
), pp.
2273
2277
.
22.
Gu
,
Y.
,
Katsura
,
Y.
,
Yoshino
,
T.
,
Takagi
,
H.
, and
Taniguchi
,
K.
,
2015
, “
Rechargeable Magnesium-Ion Battery Based on a TiSe2-Cathode With d-p Orbital Hybridized Electronic Structure
,”
Sci. Rep.
,
5
(
1
), pp.
1
9
.
23.
Liang
,
Y.
,
Feng
,
R.
,
Yang
,
S.
,
Ma
,
H.
,
Liang
,
J.
, and
Chen
,
J.
,
2011
, “
Rechargeable Mg Batteries With Graphene-Like MoS2 Cathode and Ultrasmall Mg Nanoparticle Anode
,”
Adv. Mater.
,
23
(
5
), pp.
640
643
.
24.
Liu
,
B.
,
Luo
,
T.
,
Mu
,
G.
,
Wang
,
X.
,
Chen
,
D.
, and
Shen
,
G.
,
2013
, “
Rechargeable Mg-Ion Batteries Based on WSe2 Nanowire Cathodes
,”
ACS Nano
,
7
(
9
), pp.
8051
8058
.
25.
Zhang
,
R.
,
Mizuno
,
F.
, and
Ling
,
C.
,
2014
, “
Fullerenes: Non-Transition Metal Clusters as Rechargeable Magnesium Battery Cathodes
,”
Chem. Commun.
,
51
(
6
), pp.
1108
1111
.
26.
NuLi
,
Y.
,
Yang
,
J.
,
Li
,
Y.
, and
Wang
,
J.
,
2010
, “
Mesoporous Magnesium Manganese Silicate as Cathode Materials for Rechargeable Magnesium Batteries
,”
Chem. Commun.
,
46
(
21
), pp.
3794
3796
.
27.
Bo
,
S. H.
,
Grey
,
C. P.
, and
Khalifah
,
P. G.
,
2015
, “
Defect-Tolerant Diffusion Channels for Mg2+ Ions in Ribbon-Type Borates: Structural Insights Into Potential Battery Cathodes MgVBO4 and MgxFe2–xB2O5
,”
Chem. Mater.
,
27
(
13
), pp.
4630
4639
.
28.
Wang
,
R. Y.
,
Wessells
,
C. D.
,
Huggins
,
R. A.
, and
Cui
,
Y.
,
2013
, “
Highly Reversible Open Framework Nanoscale Electrodes for Divalent Ion Batteries
,”
Nano Lett.
,
13
(
11
), pp.
5748
5752
.
29.
Mao
,
M.
,
Gao
,
T.
,
Hou
,
S.
,
Wang
,
F.
,
Chen
,
J.
,
Wei
,
Z.
,
Fan
,
X.
,
Ji
,
X.
,
Ma
,
J.
, and
Wang
,
C.
,
2019
, “
High-Energy-Density Rechargeable Mg Battery Enabled by a Displacement Reaction
,”
Nano Lett.
,
19
(
9
), pp.
6665
6672
.
30.
Shimokawa
,
K.
,
Atsumi
,
T.
,
Harada
,
M.
,
Ward
,
R. E.
,
Nakayama
,
M.
,
Kumagai
,
Y.
,
Oba
,
F.
,
Okamoto
,
N. L.
,
Kanamura
,
K.
, and
Ichitsubo
,
T.
,
2019
, “
Zinc-Based Spinel Cathode Materials for Magnesium Rechargeable Batteries: Toward the Reversible Spinel–Rocksalt Transition
,”
J. Mater. Chem. A
,
7
(
19
), pp.
12225
12235
.
31.
Ishii
,
K.
,
Doi
,
S.
,
Ise
,
R.
,
Mandai
,
T.
,
Oaki
,
Y.
,
Yagi
,
S.
, and
Imai
,
H.
,
2020
, “
Structured Spinel Oxide Positive Electrodes of Magnesium Rechargeable Batteries: High Rate Performance and High Cyclability by Interconnected Bimodal Pores and Vanadium Oxide Coating
,”
J. Alloys Compd.
,
816
, p.
152556
.
32.
Luo
,
J.
,
Bi
,
Y.
,
Zhang
,
L.
,
Zhang
,
X.
, and
Liu
,
T. L.
,
2019
, “
A Stable, Non-Corrosive Perfluorinated Pinacolatoborate Mg Electrolyte for Rechargeable Mg Batteries
,”
Angew. Chem.
,
131
(
21
), pp.
7041
7045
.
33.
Pang
,
J.
,
Mendes
,
R. G.
,
Bachmatiuk
,
A.
,
Zhao
,
L.
,
Ta
,
H. Q.
,
Gemming
,
T.
,
Liu
,
H.
,
Liu
,
Z.
, and
Rummeli
,
M. H.
,
2019
, “
Applications of 2D MXenes in Energy Conversion and Storage Systems
,”
Chem. Soc. Rev.
,
48
(
1
), pp.
72
133
.
34.
Velusamy
,
D. B.
,
El-Demellawi
,
J. K.
,
El-Zohry
,
A. M.
,
Giugni
,
A.
,
Lopatin
,
S.
,
Hedhili
,
M. N.
,
Mansour
,
A. E.
,
Fabrizio
,
E. D.
,
Mohammed
,
O. F.
, and
Alshareef
,
H. N.
,
2019
, “
MXenes for Plasmonic Photodetection
,”
Adv. Mater.
,
31
(
32
), p.
1807658
.
35.
Wang
,
Y.
,
Chen
,
R.
,
Chen
,
T.
,
Lv
,
H.
,
Zhu
,
G.
,
Ma
,
L.
,
Wang
,
C.
,
Jin
,
Z.
, and
Liu
,
J.
,
2016
, “
Emerging Non-Lithium Ion Batteries
,”
Energy Storage Mater.
,
4
, pp.
103
129
.
36.
Cai
,
Z.
,
Liu
,
B.
,
Zou
,
X.
, and
Cheng
,
H. M.
,
2018
, “
Chemical Vapor Deposition Growth and Applications of Two-Dimensional Materials and Their Heterostructures
,”
Chem. Rev.
,
118
(
13
), pp.
6091
6133
.
37.
Wang
,
Z.
,
Chen
,
Y.
,
Li
,
P.
,
He
,
J.
,
Zhang
,
W.
,
Guo
,
Z.
,
Li
,
Y.
, and
Dong
,
M.
,
2016
, “
Synthesis of Silicon-Doped Reduced Graphene Oxide and Its Applications in Dye-Sensitive Solar Cells and Supercapacitors
,”
RSC Adv.
,
6
(
18
), pp.
15080
15086
.
38.
Zhu
,
M.
,
Huang
,
Y.
,
Huang
,
Y.
,
Li
,
H.
,
Wang
,
Z.
,
Pei
,
Z.
,
Xue
,
Q.
,
Geng
,
H.
, and
Zhi
,
C.
,
2017
, “
A Highly Durable, Transferable, and Substrate-Versatile High-Performance All-Polymer Micro-Supercapacitor With Plug-and-Play Function
,”
Adv. Mater.
,
29
(
16
), p.
1605137
.
39.
Lu
,
X.
,
Wang
,
G.
,
Zhai
,
T.
,
Yu
,
M.
,
Gan
,
J.
,
Tong
,
Y.
, and
Li
,
Y.
,
2012
, “
Hydrogenated TiO2 Nanotube Arrays for Supercapacitors
,”
Nano Lett.
,
12
(
3
), pp.
1690
1696
.
40.
Zang
,
X.
,
Dai
,
Z.
,
Yang
,
J.
,
Zhang
,
Y.
,
Huang
,
W.
, and
Dong
,
X.
,
2016
, “
Template-Assisted Synthesis of Nickel Sulfide Nanowires: Tuning the Compositions for Supercapacitors With Improved Electrochemical Stability
,”
ACS Appl. Mater. Interfaces
,
8
(
37
), pp.
24645
24651
.
41.
Xiao
,
X.
,
Yu
,
H.
,
Jin
,
H.
,
Wu
,
M.
,
Fang
,
Y.
,
Sun
,
J.
,
Hu
,
Z.
, et al
,
2017
, “
Salt-Templated Synthesis of 2D Metallic MoN and Other Nitrides
,”
ACS Nano
,
11
(
2
), pp.
2180
2186
.
42.
Rafique
,
A.
,
Massa
,
A.
,
Fontana
,
M.
,
Bianco
,
S.
,
Chiodoni
,
A.
,
Pirri
,
C. F.
,
Hernández
,
S.
, and
Lamberti
,
A.
,
2017
, “
Highly Uniform Anodically Deposited Film of MnO2 Nanoflakes on Carbon Fibers for Flexible and Wearable Fiber-Shaped Supercapacitors
,”
ACS Appl. Mater. Interfaces
,
9
(
34
), pp.
28386
28393
.
43.
Lv
,
Z.
,
Luo
,
Y.
,
Tang
,
Y.
,
Wei
,
J.
,
Zhu
,
Z.
,
Zhou
,
X.
,
Li
,
W.
,
Zeng
,
Y.
,
Zhang
,
W.
, and
Zhang
,
Y.
,
2018
, “
Editable Supercapacitors With Customizable Stretchability Based on Mechanically Strengthened Ultralong MnO2 Nanowire Composite
,”
Adv. Mater.
,
30
(
2
), p.
1704531
.
44.
Subramanian
,
V.
,
Zhu
,
H.
, and
Wei
,
B.
,
2006
, “
Nanostructured MnO2: Hydrothermal Synthesis and Electrochemical Properties as a Supercapacitor Electrode Material
,”
J. Power Sources
,
159
(
1
), pp.
361
364
.
45.
Ge
,
J.
,
Yao
,
H. B.
,
Hu
,
W.
,
Yu
,
X. F.
,
Yan
,
Y. X.
,
Mao
,
L. B.
,
Li
,
H. H.
,
Li
,
S. S.
, and
Yu
,
S. H.
,
2013
, “
Facile Dip Coating Processed Graphene/MnO2 Nanostructured Sponges as High Performance Supercapacitor Electrodes
,”
Nano Energy
,
2
(
4
), pp.
505
513
.
46.
Bao
,
L.
,
Zang
,
J.
, and
Li
,
X.
,
2011
, “
Flexible Zn2SnO4/MnO2 Core/Shell Nanocable−Carbon Microfiber Hybrid Composites for High-Performance Supercapacitor Electrodes
,”
Nano Lett.
,
11
(
3
), pp.
1215
1220
.
47.
Amade
,
R.
,
Jover
,
E.
,
Caglar
,
B.
,
Mutlu
,
T.
, and
Bertran
,
E.
,
2011
, “
Optimization of MnO2/Vertically Aligned Carbon Nanotube Composite for Supercapacitor Application
,”
J. Power Sources
,
196
(
13
), pp.
5779
5783
.
48.
Jiang
,
H.
,
Wang
,
Z.
,
Yang
,
Q.
,
Hanif
,
M.
,
Wang
,
Z.
,
Dong
,
L.
, and
Dong
,
M.
,
2018
, “
A Novel MnO2/Ti3C2Tx MXene Nanocomposite as High Performance Electrode Materials for Flexible Supercapacitors
,”
Electrochim. Acta
,
290
, pp.
695
703
.
You do not currently have access to this content.