Abstract

As an important energy storage device, lithium-ion batteries have vast applications in daily production and life. Therefore, the remaining useful life (RUL) prediction of such batteries is of great significance, which can maintain the efficacy and reliability of the system powered by lithium-ion batteries. For predicting remaining useful life of lithium-ion batteries accurately, an adaptive hybrid battery model and an improved particle filter (PF) are developed. First, the adaptive hybrid model is constructed, which is a combination of empirical model and long short-term memory (LSTM) neural network model such that it could characterize battery capacity degradation trend more effectively. In addition, the adaptive adjustment of the parameters for hybrid model is realized via optimization technique. Then, the beetle antennae search (BAS) based particle filter is applied to update the battery states offline constructed by the proposed adaptive hybrid model, which can improve the estimation accuracy. Finally, remaining useful life short-term prediction is realized online based on long short-term memory neural network rolling prediction combined historical capacity with online measurements and latest offline states and model parameters. The battery data set published by NASA is used to verify the effectiveness of proposed strategy. The experimental results indicate that the proposed adaptive hybrid model can well represent the battery degradation characteristics and have a higher accuracy compared with other models. The short-term remaining useful life prediction results have good performance with the errors of 1 cycle, 3 cycles, and 1 cycle, above results indicate proposed scheme has a good performance on short-term remaining useful life prediction.

References

1.
Qi
,
D.
,
Li
,
C.
,
Wang
,
N.
,
Huang
,
M.
,
Hu
,
Z.
, and
Li
,
W.
,
2021
, “
A Novel Approach Investigating the Remaining Useful Life Predication of Retired Power Lithium-Ion Batteries Using Genetic Programming Method
,”
ASME J. Electrochem. Energy Convers. Storage
,
18
(
3
), p.
030904
.
2.
Gao
,
D. J.
,
Zhou
,
Y.
,
Wang
,
T. Z.
, and
Wang
,
Y. D.
,
2020
, “
A Method for Predicting the Remaining Useful Life of Lithium-Ion Batteries Based on Particle Filter Using Kendall Rank Correlation Coefficient
,”
Energies
,
13
(
16
), p.
4183
.
3.
Shi
,
W. J.
, and
Wang
,
H. M.
,
2020
, “
On-line Diagnosis Model of SOH Based on Thermal Characteristics of Lithium-Ion Battery
,”
Chin. J. Sci. Instrum.
,
41
, pp.
206
216
.
4.
Zhang
,
L. J.
,
Mu
,
Z. Q.
, and
Sun
,
C. Y.
,
2018
, “
Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Exponential Model and Particle Filter
,”
IEEE Access
,
6
, pp.
17729
17740
.
5.
Mo
,
B. H.
,
Yu
,
J. S.
,
Tang
,
D. Y.
,
Liu
,
H.
, and
Yu
,
J. S.
,
2016
, “
A Remaining Useful Life Prediction Approach for Lithium-Ion Batteries Using Kalman Filter and an Improved Particle Filter
,”
2016 IEEE International Conference on Prognostics and Health Management (ICPHM)
,
Ottawa, ON, Canada
, pp.
1
5
.
6.
Liu
,
D. T.
,
Luo
,
Y.
,
Liu
,
J.
,
Peng
,
Y.
,
Guo
,
L. M.
, and
Pecht
,
M.
,
2014
, “
Lithium-Ion Battery Remaining Useful Life Estimation Based on Fusion Nonlinear Degradation AR Model and RPF Algorithm
,”
Neural. Comput. Appl.
,
25
(
3–4
), pp.
557
572
.
7.
Guha
,
A.
,
Vaisakh
,
K. V.
, and
Patra
,
A.
,
2016
, “
Remaining Useful Life Estimation of Lithium-Ion Batteries Based on a New Capacity Degradation Model
,”
2016 IEEE Transportation Electrification Conference and Expo, Asia-Pacific
,
Busan, South Korea
.
8.
Ma
,
G. J.
,
Zhang
,
Y.
,
Cheng
,
C.
,
Zhou
,
B. T.
,
Hu
,
P. C.
, and
Yuan
,
Y.
,
2019
, “
Remaining Useful Life Prediction of Lithium-Ion Batteries Based on False Nearest Neighbors and a Hybrid Neural Network
,”
Appl. Energy
,
253
, p.
113626
.
9.
Wei
,
J. W.
,
Dong
,
G. Z.
, and
Chen
,
Z. H.
,
2018
, “
Remaining Useful Life Prediction and State of Health Diagnosis for Lithium-Ion Batteries Using Particle Filter and Support Vector Regression
,”
IEEE Trans. Ind. Electron.
,
65
(
7
), pp.
5634
5643
.
10.
Jia
,
J. F.
,
Liang
,
J. Y.
,
Shi
,
Y. H.
,
Wen
,
J.
,
Pang
,
X. Q.
, and
Zeng
,
J. C.
,
2020
, “
SOH and RUL Prediction of Lithium-Ion Batteries Based on Gaussian Process Regression With Indirect Health Indicators
,”
Energies
,
13
(
2
), p.
375
.
11.
Wu
,
J.
,
Zhang
,
C. B.
, and
Chen
,
Z. H.
,
2016
, “
An Online Method for Lithium-Ion Battery Remaining Useful Life Estimation Using Importance Sampling and Neural Networks
,”
Appl. Energy
,
173
, pp.
134
140
.
12.
Li
,
X. Y.
,
Zhang
,
L.
,
Wang
,
Z. P.
, and
Dong
,
P.
,
2019
, “
Remaining Useful Life Prediction for Lithium-ion Batteries Based on a Hybrid Model Combining the Long Short-Term Memory and Elman Neural Networks
,”
J. Energy Storage
,
21
, pp.
510
518
.
13.
Li
,
P. H.
,
Zhang
,
Z. J.
,
Xiong
,
Q. Y.
,
Ding
,
B. C.
,
Hou
,
J.
,
Luo
,
D. C.
,
Rong
,
Y. J.
, and
Li
,
S. Y.
,
2020
, “
State-of-Health Estimation and Remaining Useful Life Prediction for the Lithium-Ion Battery Based on a Variant Long Short Term Memory Neural Network
,”
J. Power Sources
,
459
, p.
228069
.
14.
Zhang
,
Y. Z.
,
Xiong
,
R.
,
He
,
H. W.
, and
Liu
,
Z. R.
,
2017
, “
A LSTM-RNN Method for the Lithuim-Ion Battery Remaining Useful Life Prediction
,”
2017 Prognostics and System Health Management Conference (PHM-Harbin)
,
Harbin, China
, pp.
1
4
.
15.
Zhang
,
Y. Z.
,
Xiong
,
R.
,
He
,
H. W.
, and
Pecht
,
M. G.
,
2018
, “
Long Short-Term Memory Recurrent Neural Network for Remaining Useful Life Prediction of Lithium-Ion Batteries
,”
IEEE Trans. Veh. Technol.
,
67
(
7
), pp.
5695
5705
.
16.
Qin
,
W.
,
Lv
,
H. C.
,
Liu
,
C. L.
,
Nirmalya
,
D.
, and
Jahanshahi
,
P.
,
2019
, “
Remaining Useful Life Prediction for Lithium-Ion Batteries Using Particle Filter and Artificial Neural Network
,”
Ind. Manag. Data Syst.
,
120
(
2
), pp.
312
328
.
17.
Zhao
,
G. Q.
,
Zhang
,
G. H.
,
Liu
,
Y. F.
,
Zhang
,
B.
, and
Hu
,
C.
,
2017
, “
Lithium-Ion Battery Remaining Useful Life Prediction With Deep Belief Network and Relevance Vector Machine
,”
2017 IEEE International Conference on Prognostics and Health Management (ICPHM)
,
Dallas, TX
, pp.
7
13
.
18.
Shen
,
S.
,
Sadoughi
,
M.
,
Chen
,
X. Y.
,
Hong
,
M. Y.
, and
Hu
,
C.
,
2019
, “
A Deep Learning Method for Online Capacity Estimation of Lithium-Ion Batteries
,”
J. Energy Storage
,
25
, p.
100817
.
19.
Ma
,
Y.
,
Chen
,
Y.
,
Zhang
,
F.
, and
Chen
,
H.
,
2019
, “
Remaining Useful Life Prediction of Power Battery Based on Extend H( Particle Filter Algorithm
,”
J. Mech. Eng.
,
55
(
20
), pp.
36
43
. CNKI:SUN:JXXB.0.2019-20-005
20.
Duan
,
B.
,
Zhang
,
Q.
,
Geng
,
F.
, and
Zhang
,
C. H.
,
2020
, “
Remaining Useful Life Prediction of Lithium-Ion Battery Based on Extended Kalman Particle Filter
,”
Int. J. Energy Res.
,
44
(
3
), pp.
1724
1734
.
21.
Zhang
,
H.
,
Miao
,
Q.
,
Zhang
,
X.
, and
Liu
,
Z. W.
,
2018
, “
An Improved Unscented Particle Filter Approach for Lithium-Ion Battery Remaining Useful Life Prediction
,”
Microelectron. Reliab.
,
81
, pp.
288
298
.
22.
Zhang
,
X.
,
Miao
,
Q.
, and
Liu
,
Z. W.
,
2017
, “
Remaining Useful Life Prediction of Lithium-Ion Battery Using an Improved UPF Method Based on MCMC
,”
Microelectron. Reliab.
,
75
, pp.
288
295
.
23.
Xue
,
Z. W.
,
Zhang
,
Y.
,
Cheng
,
C.
, and
Ma
,
G. J.
,
2019
, “
Remaining Useful Life Prediction of Lithium-Ion Batteries With Adaptive Unscented Kalman Filter and Optimized Support Vector Regression
,”
Neurocomputing
,
376
, pp.
95
102
.
24.
Wu
,
Y.
,
Li
,
W.
,
Wang
,
Y. R.
, and
Zhang
,
K.
,
2019
, “
Remaining Useful Life Prediction of Lithium-Ion Batteries Using Neural Network and Bat-Based Particle Filter
,”
IEEE Access
,
7
, pp.
54843
54854
.
25.
Xie
,
R. Y.
,
Ma
,
R.
,
Pu
,
S. C.
,
Xu
,
L. C.
,
Zhao
,
D. D.
, and
Huangfu
,
Y. G.
,
2020
, “
Prognostic for Fuel Cell Based on Particle Filter and Recurrent Neural Network Fusion Structure
,”
Energy AI
,
2
, p.
100017
.
26.
Li
,
W. H.
,
Sengupta
,
N.
,
Dechent
,
P.
,
Howey
,
D.
,
Annaswamy
,
A.
, and
Sauer
,
D. U.
,
2020
, “
Online Capacity Estimation of Lithium-Ion Batteries With Deep Long Short-Term Memory Networks
,”
J. Power Sources
,
482
, p.
228863
.
27.
Hu
,
X.
,
Yang
,
X.
,
Feng
,
F.
,
Liu
,
K.
, and
Lin
,
X.
,
2021
, “
A Particle Filter and Long Short-Term Memory Fusion Technique for Lithium-Ion Battery Remaining Useful Life Prediction
,”
ASME J. Dyn. Syst. Meas. Control
,
143
(
6
), p.
061001
.
28.
Hu
,
X. S.
,
Xu
,
L.
,
Lin
,
X. K.
, and
Pecht
,
M.
,
2019
, “
Battery Lifetime Prognostics
,”
Joule
,
4
(
2
), pp.
310
346
.
29.
Tian
,
H. X.
,
Qin
,
P. L.
,
Li
,
K.
, and
Zhao
,
Z.
,
2020
, “
A Review of the State of Health for Lithium-Ion Batteries: Research Status and Suggestions
,”
J. Cleaner Prod.
,
261
, p.
120813
.
30.
Ge
,
M. F.
,
Liu
,
Y. B.
,
Jiang
,
X. X.
, and
Liu
,
J.
,
2021
, “
A Review on State of Health Estimations and Remaining Useful Life Prognostics of Lithium-Ion Batteries
,”
Measurement
,
174
, p.
109057
.
31.
Fan
,
J. M.
,
Fan
,
J. P.
,
Liu
,
F.
,
Qu
,
J. T.
, and
Li
,
R. F.
,
2019
, “
A Novel Machine Learning Method Based Approach for Li-Ion Battery Prognostic and Health Management
,”
IEEE Access
,
7
, pp.
160043
160061
.
32.
Sadabadi
,
K. K.
,
Jin
,
X.
, and
Rizzoni
,
G.
,
2020
, “
Prediction of Remaining Useful Life for a Composite Electrode Lithium-Ion Battery Cell Using an Electrochemical Model to Estimate the State of Health
,”
J. Power Sources
,
481
, p.
228861
.
33.
Li
,
S.
,
Fang
,
H. J.
, and
Shi
,
B.
,
2021
, “
Remaining Useful Life Estimation of Lithium-Ion Battery Based on Interacting Multiple Model Particle Filter and Support Vector Regression
,”
Reliab. Eng. Syst. Saf.
,
210
, p.
107542
.
34.
Pan
,
C. F.
,
Huang
,
A. B.
,
He
,
Z. G.
,
Lin
,
C. J.
,
Sun
,
Y. Y.
,
Zhao
,
S. C.
, and
Wang
,
L. M.
,
2021
, “
Prediction of Remaining Useful Life for Lithium-ion Battery Based on Particle Filter With Residual Resampling
,”
Energy Sci. Eng.
,
9
(
8
), pp.
1115
1133
.
35.
Abbasimehr
,
H.
,
Shabani
,
M.
, and
Yousefi
,
M.
,
2020
, “
An Optimized Model Using LSTM Network for Demand Forecasting
,”
Comput. Ind. Eng.
,
143
, p.
106435
.
36.
Yang
,
F. F.
,
Zhang
,
S. H.
,
Li
,
W. H.
, and
Miao
,
Q.
,
2020
, “
State-of-Charge Estimation of Lithium-Ion Batteries Using LSTM and UKF
,”
Energy
,
201
, p.
117664
.
37.
Park
,
K.
,
Choi
,
Y.
,
Choi
,
W. J.
,
Ryu
,
H. Y.
, and
Kim
,
H.
,
2020
, “
LSTM-Based Battery Remaining Useful Life Prediction With Multi-Channel Charging Profiles
,”
IEEE Access
,
8
, pp.
20786
20798
.
38.
Li
,
T. C.
,
Fan
,
H. Q.
, and
Sun
,
S. D.
,
2015
, “
Particle Filtering: Theory, Approach, and Application for Multitarget Tracking
,”
Acta Autom. Sin.
,
41
, pp.
1981
2002
.
39.
He
,
N.
,
Chen
,
Y. X.
,
He
,
L. L.
, and
Jiang
,
Y. C.
,
2019
, “
Pipeline Leak Location Based on Particle Filter and Compressed Sensing
,”
Chin. J. Sci. Instrum.
,
40
(
12
), pp.
36
46
.
40.
Yue
,
Z. C.
,
Li
,
G.
,
Jiang
,
X. Y.
,
Li
,
S.
,
Cheng
,
J.
, and
Ren
,
P.
,
2020
, “
Hardware Descriptive Approach to Beetle Antennae Search
,”
IEEE Access
,
8
, pp.
89059
89071
.
41.
Zhu
,
Z. Y.
,
Zhang
,
Z. Y.
, and
Man
,
W. S.
,
2018
, “
A New Beetle Antennae Search Algorithm for Multi-Objective Energy Management in Microgrid
,”
2018 13th IEEE Conference on Industrial Electronics and Applications
,
Wuhan, China
, pp.
1599
1603
.
42.
Wang
,
D.
,
Kong
,
J. Z.
,
Zhao
,
Y.
, and
Tsui
,
K. L.
,
2019
, “
Piecewise Model Based Intelligent Prognostics for State of Health Prediction of Rechargeable Batteries With Capacity Regeneration Phenomena
,”
Measurement
,
147
, p.
106836
.
43.
Richardson
,
R. R.
,
Osborne
,
M. A.
, and
Howey
,
D. A.
,
2019
, “
Battery Health Prediction Under Generalized Conditions Using a Gaussian Process Transition Model
,”
J. Energy Storage
,
23
, pp.
320
328
.
44.
Zhu
,
J. G.
,
Knapp
,
M.
,
Sørensen
,
D. R.
,
Heere
,
M.
,
Darma
,
M. S.
,
Müller
,
M.
,
Mereacre
,
L.
, et al
,
2021
, “
Investigation of Capacity Fade for 18650-Type Lithium-Ion Batteries Cycled in Different State of Charge (SoC) Ranges
,”
J. Power Sources
,
489
, p.
229422
.
45.
Choi
,
Y.
,
Ryu
,
S.
,
Park
,
K.
, and
Kim
,
H.
,
2019
, “
Machine Learning-Based Lithium-Ion Battery Capacity Estimation Exploiting Multi-Channel Charging Profiles
,”
IEEE Access
,
7
, pp.
75143
75152
.
You do not currently have access to this content.