Abstract

The estimation of state of charge (SOC) is a critical issue in the energy management of electric vehicle (EV) power batteries. However, the current accuracy of SOC estimation methods does not meet the requirements of practical applications. Therefore, this study proposes an improved lithium-ion battery SOC estimation method that combines deep residual shrinkage network (DRSN) and bidirectional gated recurrent unit (BiGRU) to enhance the SOC estimation accuracy. First, we insert the bidirectional gated recurrent unit neural network between the global average pooling layer and the output fully connected layer of the deep residual shrinkage network. This improvement enhances the model’s expressiveness, robustness, and data learning effect. Second, we develop a new activation function called “∂_swish” to replace the original ReLU activation function in the deep residual shrinkage network. The ∂_swish activation function improves the accuracy of the deep network model and reduces the risk of overfitting by utilizing its regularization effect. Finally, we conduct experimental tests at three different temperatures using the FUDS driving cycle dataset and the DST-US06-FUDS continuous driving cycle dataset. The algorithm model’s convergence speed is verified by comparing it with other models. The results show that compared to other models, the proposed method significantly improves SOC estimation accuracy at three different temperatures. In addition, the method demonstrates a high convergence speed.

References

1.
Yang
,
Y.
,
Zhu
,
W.
,
Xie
,
C.
,
Shi
,
Y.
,
Liu
,
F.
,
Li
,
W.
, and
Tang
,
Z.
,
2020
, “
A Layered Bidirectional Active Equalization Method for Retired Power Lithium-Ion Batteries for Energy Storage Applications
,”
Energies
,
13
(
4
), p.
832
.
2.
Qays
,
M. O.
,
Buswig
,
Y.
,
Hossain
,
M. L.
, and
Abu-Siada
,
A.
,
2022
, “
Recent Progress and Future Trends on the State of Charge Estimation Methods to Improve Battery Storage Efficiency: A Review
,”
CSEE J. Power Energy Syst.
,
2
(
3
), pp.
105
114
.
3.
Lu
,
L. G.
,
Han
,
X. B.
,
Li
,
J. Q.
,
Hua
,
J. F.
, and
Ouyang
,
M. G.
,
2013
, “
A Review on the Key Issues for Lithium-Ion Battery Management in Electric Vehicles
,”
J. Power Sources
,
226
(
2
), pp.
272
288
.
4.
Zhang
,
M.
,
Wang
,
W.
,
Xia
,
G.
,
Wang
,
L.
, and
Wang
,
K.
,
2023
, “
Self-Powered Electronic Skin for Remote Human–Machine Synchronization
,”
ACS Appl. Electron. Mater.
,
5
(
1
), pp.
498
508
.
5.
Yu
,
X.
,
Ma
,
N.
,
Zheng
,
L.
,
Wang
,
L.
, and
Wang
,
K.
,
2023
, “
Developments and Applications of Artificial Intelligence in Music Education
,”
Technologies
,
11
(
2
), p.
42
.
6.
Zhang
,
M.
,
Yang
,
D.
,
Du
,
J.
,
Sun
,
H.
,
Li
,
L.
,
Wang
,
L.
, and
Wang
,
K.
,
2023
, “
A Review of SOH Prediction of Li-Ion Batteries Based on Data-Driven Algorithms
,”
Energies
,
16
(
7
), p.
3167
.
7.
Wang
,
W.
,
Yang
,
D.
,
Huang
,
Z.
,
Hu
,
H.
,
Wang
,
L.
, and
Wang
,
K.
,
2022
, “
Electrodeless Nanogenerator for Dust Recover
,”
Energy Technol.
,
10
(
12
), p.
2200699
.
8.
Li
,
J.
,
Ye
,
M.
,
Gao
,
K.
,
Jiao
,
S.
, and
Xu
,
X.
,
2021
, “
A Novel Battery State Estimation Model Based on Unscented Kalman Filter
,”
Ionics
,
27
(
6
), pp.
2673
2683
.
9.
Zheng
,
Y.
,
Ouyang
,
M.
,
Han
,
X.
,
Lu
,
L.
, and
Li
,
J.
,
2018
, “
Investigating the Error Sources of the Online State of Charge Estimation Methods for Lithium-Ion Batteries in Electric Vehicles
,”
J. Power Sources
,
377
(
1
), pp.
161
188
.
10.
How
,
D. N.
,
Hannan
,
M. A.
,
Lipu
,
M. H.
, and
Ker
,
P. J.
,
2019
, “
State of Charge Estimation for Lithium-Ion Batteries Using Model-Based and Data-Driven Methods: A Review
,”
IEEE Access
,
7
, pp.
136116
136136
.
11.
Luo
,
Y.
,
Qi
,
P. W.
,
Huang
,
H.
,
Wang
,
J. N.
,
Wang
,
Y
, and
Li
,
P. Y.
,
2020
, “
Ampere-Hour Integration Based on Capacity Correction Study on Estimation Method of SOC
,”
Automot. Eng.
,
42
(
05
), pp.
681
687
.
12.
Xing
,
Y.
,
He
,
W.
,
Pecht
,
M.
, and
Tsui
,
K. L.
,
2014
, “
State of Charge Estimation of Lithium-Ion Batteries Using the Open-Circuit Voltage at Various Ambient Temperatures
,”
Appl. Energy
,
113
(
1
), pp.
106
115
.
13.
Shrivastava
,
P.
,
Soon
,
T. K.
,
Idris
,
M. Y. I. B.
, and
Mekhilef
,
S.
,
2019
, “
Overview of Model-Based Online State-of-Charge Estimation Using Kalman Filter Family for Lithium-Ion Batteries
,”
Renewable Sustainable Energy Rev.
,
113
(
2
), p.
109233
.
14.
Xu
,
Y.
,
Hu
,
M.
,
Zhou
,
A.
,
Li
,
Y.
,
Li
,
S.
,
Fu
,
C.
, and
Gong
,
C.
,
2020
, “
State of Charge Estimation for Lithium-Ion Batteries Based on Adaptive Dual Kalman Filter
,”
Appl. Math. Model.
,
77
(
1
), pp.
1255
1272
.
15.
Kwak
,
M.
,
Lkhagvasuren
,
B.
,
Jin
,
H. S.
,
Seo
,
G.
,
Bong
,
S.
, and
Lee
,
J.
,
2022
, “
A Variable-Length Scale Parameter Dependent State of Charge Estimation of Lithium Ion Batteries by Kalman Filters
,”
Int. J. Electrochem. Sci.
,
17
(
2
), p.
220218
.
16.
Feng
,
L.
,
Ding
,
J.
, and
Han
,
Y.
,
2020
, “
Improved Sliding Mode Based EKF for the SOC Estimation of Lithium-Ion Batteries
,”
Ionics
,
26
(
6
), pp.
2875
2882
.
17.
Qian
,
K.
,
Liu
,
X.
,
Wang
,
Y.
,
Yu
,
X.
, and
Huang
,
B.
,
2022
, “
Modified Dual Extended Kalman Filters for SOC Estimation and Online Parameter Identification of Lithium-Ion Battery Via Modified Gray Wolf Optimizer
,”
Proc. Inst. Mech. Eng. Part D: J. Automob. Eng.
,
236
(
8
), pp.
1761
1774
.
18.
Wang
,
H.
,
Zheng
,
Y.
, and
Yu
,
Y.
,
2021
, “
Lithium-Ion Battery SOC Estimation Based on Adaptive Forgetting Factor Least Squares Online Identification and Unscented Kalman Filter
,”
Mathematics
,
9
(
15
), p.
1733
.
19.
Chemali
,
E.
,
Kollmeyer
,
P. J.
,
Preindl
,
M.
, and
Emadi
,
A.
,
2018
, “
State-of-Charge Estimation of Li-Ion Batteries Using Deep Neural Networks: A Machine Learning Approach
,”
J. Power Sources
,
400
(
1
), pp.
242
255
.
20.
Chaoui
,
H.
, and
Ibe-Ekeocha
,
C. C.
,
2017
, “
State of Charge and State of Health Estimation for Lithium Batteries Using Recurrent Neural Networks
,”
IEEE Trans. Veh. Technol.
,
66
(
10
), pp.
8773
8783
.
21.
Cui
,
Z.
,
Wang
,
L.
,
Li
,
Q.
, and
Wang
,
K.
,
2022
, “
A Comprehensive Review on the State of Charge Estimation for Lithium-Ion Battery Based on Neural Network
,”
Int. J. Energy Res.
,
46
(
5
), pp.
5423
5440
.
22.
Gong
,
Q.
,
Wang
,
P.
, and
Cheng
,
Z.
,
2022
, “
A Data-Driven Model Framework Based on Deep Learning for Estimating the States of Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
169
(
3
), p.
030532
.
23.
Chaoui
,
H.
,
Ibe-Ekeocha
,
C. C.
, and
Gualous
,
H.
,
2017
, “
Aging Prediction and State of Charge Estimation of a LiFePO4 Battery Using Input Time-Delayed Neural Networks
,”
Electr. Power Syst. Res.
,
146
(
1
), pp.
189
197
.
24.
Chen
,
X.
,
Wang
,
S.
,
Xie
,
Y.
,
Fernandez
,
C.
, and
Fan
,
Y.
,
2021
, “
A Novel Fireworks Factor and Improved Elite Strategy Based on Back Propagation Neural Networks for State-of-Charge Estimation of Lithium-Ion Batteries
,”
Int. J. Electrochem. Sci.
,
16
(
9
), pp.
1
14
.
25.
Wang
,
Q.
,
Gu
,
H.
,
Ye
,
M.
,
Wei
,
M.
, and
Xu
,
X.
,
2021
, “
State of Charge Estimation for Lithium-Ion Battery Based on NARX Recurrent Neural Network and Moving Window Method
,”
IEEE Access
,
9
, pp.
83364
83375
.
26.
Chemali
,
E.
,
Kollmeyer
,
P. J.
,
Preindl
,
M.
,
Ahmed
,
R.
, and
Emadi
,
A.
,
2017
, “
Long Short-Term Memory Networks for Accurate State-of-Charge Estimation of Li-Ion Batteries
,”
IEEE Trans. Ind. Electron.
,
65
(
8
), pp.
6730
6739
.
27.
Chen
,
J.
,
Feng
,
X.
,
Jiang
,
L.
, and
Zhu
,
Q.
,
2021
, “
State of Charge Estimation of Lithium-Ion Battery Using Denoising Autoencoder and Gated Recurrent Unit Recurrent Neural Network
,”
Energy
,
227
(
1
), p.
120451
.
28.
Fasahat
,
M.
, and
Manthouri
,
M.
,
2020
, “
State of Charge Estimation of Lithium-Ion Batteries Using Hybrid Autoencoder and Long Short Term Memory Neural Networks
,”
J. Power Sources
,
469
(
1
), p.
228375
.
29.
Ren
,
X.
,
Liu
,
S.
,
Yu
,
X.
, and
Dong
,
X.
,
2021
, “
A Method for State-of-Charge Estimation of Lithium-Ion Batteries Based on PSO-LSTM
,”
Energy
,
234
(
1
), p.
121236
.
30.
Zhao
,
M.
,
Zhong
,
S.
,
Fu
,
X.
,
Tang
,
B.
, and
Pecht
,
M.
,
2019
, “
Deep Residual Shrinkage Networks for Fault Diagnosis
,”
IEEE Trans.Ind. Inform.
,
16
(
7
), pp.
4681
4690
.
31.
Li
,
W.
,
Sengupta
,
N.
,
Dechent
,
P.
,
Howey
,
D.
,
Annaswamy
,
A.
, and
Sauer
,
D. U.
,
2021
, “
Online Capacity Estimation of Lithium-Ion Batteries With Deep Long Short-Term Memory Networks
,”
J. Power Sources
,
482
(
1
), p.
228863
.
32.
Javid
,
G.
,
Basset
,
M.
, and
Abdeslam
,
D. O.
,
2020
, “
Adaptive Online Gated Recurrent Unit for Lithium-Ion Battery SOC Estimation
,”
IECON 2020 the 46th Annual Conference of the IEEE Industrial Electronics Society
,
Singapore
,
Oct. 18–21
, pp.
3583
3587
.
33.
C. B. R. Group
. “
CALCE Center for Advanced Life Cycle Engineering Lithium-Ion Battery Experimental Data
,” http://www.calce.umd.edu/batteries/data.htm
34.
Dalala
,
Z.
,
Saadeh
,
O.
, and
Hussein
,
A. A.
,
2019
, “
A Current Sensorless Coulomb-Counting Method for Enhanced Battery State-of-Charge Estimation Accuracy
,”
2019 IEEE Energy Conversion Congress and Exposition (ECCE)
,
Baltimore, MD
,
Sept. 29–Oct. 3
, pp.
1131
1135
.
You do not currently have access to this content.