Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Understanding the interaction between mechanical deformation and mass transport, such as diffusion-induced stress, is crucial in the development of advanced battery materials and electrochemical devices. Mathematical modeling and solving the related coupling problems have played important roles in advancing the understanding of the interaction between mechanical deformation and mass transport. As the complexity of mathematical modeling continues to increase, numerical methods used to solve the related coupling problems are likely to encounter significant challenges. This work explores the feasibility of designing a neural network specifically for solving diffusion-induced stress in the electrode of lithium-ion battery via deep learning techniques. A loss function is constructed from the spatiotemporal coordinates of sampling points within the solution domain, the overall structure of the system of partial differential equations, boundary conditions, and initial conditions. The distributions of stress and lithium concentration in a hollow-cylindrical nanoelectrode are obtained. The high degree of conformity between the numerical results and those from the finite element method is demonstrated.

References

1.
Yang
,
H.
,
Fan
,
F.
,
Liang
,
W.
,
Guo
,
X.
,
Zhu
,
T.
, and
Zhang
,
S.
,
2014
, “
A Chemo-Mechanical Model of Lithiation in Silicon
,”
J. Mech. Phys. Solids
,
70
, pp.
349
361
.
2.
Yang
,
H.
,
Huang
,
S.
,
Huang
,
X.
,
Fan
,
F.
,
Liang
,
W.
,
Liu
,
X. H.
,
Chen
,
L.-Q.
, et al
,
2012
, “
Orientation-Dependent Interfacial Mobility Governs the Anisotropic Swelling in Lithiated Silicon Nanowires
,”
Nano Lett.
,
12
(
4
), pp.
1953
1958
.
3.
Gao
,
X.
,
He
,
P.
,
Ren
,
J.
, and
Xu
,
J.
,
2019
, “
Modeling of Contact Stress Among Compound Particles in High Energy Lithium-Ion Battery
,”
Energy Storage Mater.
,
18
, pp.
23
33
.
4.
Gao
,
Y. F.
,
Cho
,
M.
, and
Zhou
,
M.
,
2013
, “
Mechanical Reliability of Alloy-Based Electrode Materials for Rechargeable Li-Ion Batteries
,”
J. Mech. Sci. Technol.
,
27
(
5
), pp.
1205
1224
.
5.
Li
,
Y.
,
Zhang
,
K.
, and
Yang
,
F.
,
2022
, “
Generalized Theory for DISes in a Large Deformed Solid
,”
Int. J. Appl. Mech.
,
14
(
4
), p.
2250024
.
6.
Zhang
,
K.
,
Zhou
,
J.
,
Tian
,
T.
,
Kai
,
Y.
,
Li
,
Y.
,
Zheng
,
B.
, and
Yang
,
F.
,
2023
, “
Cycling-Induced Damage of Silicon-Based Lithium-Ion Batteries: Modeling and Experimental Validation
,”
Int. J. Fatigue
,
172
, p.
107660
.
7.
Yang
,
F.
,
2005
, “
Interaction Between Diffusion and Chemical Stresses
,”
Mater. Sci. Eng. A
,
409
(
1–2
), pp.
153
159
.
8.
Yang
,
F.
,
2012
, “
Diffusion-Induced Stress in Inhomogeneous Materials: Concentration-Dependent Elastic Modulus
,”
Sci. China Phys. Mech.
,
55
(
6
), pp.
955
962
.
9.
Chan
,
C. K.
,
Peng
,
H.
,
Liu
,
G.
,
McIlwrath
,
K.
,
Zhang
,
X. F.
,
Huggins
,
R. A.
, and
Cui
,
Y.
,
2007
, “
High-Performance Lithium Battery Anodes Using Silicon Nanowires
,”
Nat. Nanotechnol.
,
3
(
1
), pp.
31
35
.
10.
Hardin
,
G.
,
Zhang
,
Y.
,
Fincher
,
C.
, and
Pharr
,
M.
,
2017
, “
Interfacial Fracture of Nanowire Electrodes of Lithium-Ion Batteries
,”
JOM
,
69
(
9
), pp.
1519
1523
.
11.
Huggins
,
R. A.
, and
Nix
,
W. D.
,
2000
, “
Decrepitation Model for Capacity Loss During Cycling of Alloys in Rechargeable Electrochemical Systems
,”
Ionics
,
6
(
1
), pp.
57
63
.
12.
Purkayastha
,
R.
, and
McMeeking
,
R.
,
2016
, “
Stress Due to the Intercalation of Lithium in Cubic-Shaped Particles: A Parameter Study
,”
Meccanica
,
51
(
12
), pp.
3081
3096
.
13.
Li
,
J.
,
Dozier
,
A. K.
,
Li
,
Y.
,
Yang
,
F.
, and
Cheng
,
Y.-T.
,
2011
, “
Crack Pattern Formation in Thin Film Lithium-Ion Battery Electrodes
,”
J. Electrochem. Soc.
,
158
(
6
), p.
A689
.
14.
DeLuca
,
C. M.
,
Maute
,
K.
, and
Dunn
,
M. L.
,
2011
, “
Effects of Electrode Particle Morphology on Stress Generation in Silicon During Lithium Insertion
,”
J. Power Sources
,
196
(
22
), pp.
9672
9681
.
15.
Yang
,
F.
,
2013
, “
Effect of Diffusion-Induced Bending on Diffusion-Induced Stress Near the End Faces of an Elastic Hollow Cylinder
,”
Mech. Res. Commun.
,
51
, pp.
72
77
.
16.
Xing
,
H.
,
Liu
,
Y.
, and
Wang
,
B.
,
2019
, “
Mechano-Electrochemical and Buckling Analysis of Composition-Gradient Nanowires Electrodes in Lithium-Ion Battery
,”
Acta Mech.
,
230
(
12
), pp.
4145
4156
.
17.
Lee
,
S. W.
,
Lee
,
H.-W.
,
Ryu
,
I.
,
Nix
,
W. D.
,
Gao
,
H.
, and
Cui
,
Y.
,
2015
, “
Kinetics and Fracture Resistance of Lithiated Silicon Nanostructure Pairs Controlled by Their Mechanical Interaction
,”
Nat. Commun.
,
6
(
1
), p.
7533
.
18.
Bagheri
,
A.
,
Arghavani
,
J.
,
Naghdabadi
,
R.
, and
Brassart
,
L.
,
2021
, “
A Theory for Coupled Lithium Insertion and Viscoplastic Flow in Amorphous Anode Materials for Li-Ion Batteries
,”
Mech. Mater.
,
152
, p.
103663
.
19.
Cui
,
Y.
,
Du
,
C.
,
Yin
,
G.
,
Gao
,
Y.
,
Zhang
,
L.
,
Guan
,
T.
,
Yang
,
L.
, and
Wang
,
F.
,
2015
, “
Multi-Stress Factor Model for Cycle Lifetime Prediction of Lithium ion Batteries With Shallow-Depth Discharge
,”
J. Power Sources
,
279
, pp.
123
132
.
20.
Zhao
,
K.
,
Pharr
,
M.
,
Cai
,
S.
,
Vlassak
,
J. J.
, and
Suo
,
Z.
,
2011
, “
Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge
,”
J. Am. Ceram. Soc.
,
94
(
S1
), pp.
s226
s235
.
21.
Gao
,
F.
, and
Hong
,
W.
,
2016
, “
Phase-Field Model for the Two-Phase Lithiation of Silicon
,”
J. Mech. Phys. Solids
,
94
, pp.
18
32
.
22.
Lu
,
B.
,
Song
,
Y.
,
Zhang
,
Q.
,
Pan
,
J.
,
Cheng
,
Y.-T.
, and
Zhang
,
J.
,
2016
, “
Voltage Hysteresis of Lithium Ion Batteries Caused by Mechanical Stress
,”
Phys. Chem. Chem. Phys.
,
18
(
6
), pp.
4721
4727
.
23.
Yang
,
F.
,
2010
, “
Effect of Local Solid Reaction on Diffusion-Induced Stress
,”
J. Appl. Phys.
,
107
(
10
), p.
103516
.
24.
Yang
,
F.
,
2014
, “
A Simple Model for Diffusion-Induced Dislocations During the Lithiation of Crystalline Materials
,”
Theor. App. Mech. Lett.
,
4
(
5
), pp.
051001
.
25.
Blechschmidt
,
J.
, and
Ernst
,
O.
,
2021
, “
Three Ways to Solve Partial Differential Equations With Neural Networks – A Review
,”
GAMM-Mitt.
,
44
(
2
), p.
e202100006
.
26.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.
27.
Lu
,
L.
,
Meng
,
X.
,
Mao
,
Z.
, and
Karniadakis
,
G. E.
,
2021
, “
DeepXDE: A Deep Learning Library for Solving Differential Equations
,”
SIAM Rev.
,
63
(
1
), pp.
208
228
.
28.
Han
,
J.
,
Jentzen
,
A.
, and
E
,
W.
,
2018
, “
Solving High-Dimensional Partial Differential Equations Using Deep Learning
,”
Proc. Natl. Acad. Sci. U.S.A.
,
115
(
34
), pp.
8505
8510
.
29.
Bar-Sinai
,
Y.
,
Hoyer
,
S.
,
Hickey
,
J.
, and
Brenner
,
M. P.
,
2019
, “
Learning Data-Driven Discretizations for Partial Differential Equations
,”
Proc. Natl. Acad. Sci. U.S.A.
,
116
(
31
), pp.
15344
15349
.
30.
Huang
,
H.
,
Li
,
Y.
,
Xue
,
Y.
,
Zhang
,
K.
, and
Yang
,
F.
,
2023
, “
A Deep Learning Approach for Solving Diffusion-Induced Stress in Large-Deformed Thin Film Electrodes
,”
J. Energy Storage
,
63
, pp.
107037
.
31.
Xue
,
Y.
,
Li
,
Y.
,
Zhang
,
K.
, and
Yang
,
F.
,
2022
, “
A Physics-Inspired Neural Network to Solve Partial Differential Equations – Application in Diffusion-Induced Stress
,”
Phys. Chem. Chem. Phys.
,
24
(
13
), pp.
7937
7949
.
You do not currently have access to this content.