A three-dimensional (3D) model has been developed to simulate proton exchange membrane fuel cells. The model accounts simultaneously for electrochemical kinetics, current distribution, hydrodynamics, and multi-components transport. A single set of conservation equations of mass, momentum, energy, species, and electric current are developed and numerically solved using a finite-volume-based computational fluid dynamics technique (by computational fluid dynamics ACE+ commercial code). The physical model is presented for a 5cm×4.92cm×0.4479cm 3D geometry test cell with serpentine channels and counter flow. Subsequently, the model is applied to explore cell temperature effects in the cell environment with different relative humidity of inlet. The numerical model is validated and agreed well with the experimental data. The nonuniformity of thermal and water-saturation distributions is calculated and analyzed as well as its influence on the cell performance. As the cell is operated at low voltages (or high current densities), the thermal field of fuel cell tends to be nonuniform and exists locally in hot spots. The mechanism of thermal field and water content interacted with membrane dehydration and cathode water flooding will be discussed and revealed their influences on the cell performance, stability and degradation will be revealed.

1.
Springer
,
T. E.
,
Zawodinski
,
T. A.
, and
Gottesfeld
,
S.
, 1991,
J. Electrochem. Soc.
0013-4651,
138
(
8
), pp.
2334
2342
.
2.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
, 1992,
J. Electrochem. Soc.
0013-4651,
139
,
2477
2491
.
3.
Gurau
,
V.
,
Liu
,
H.
, and
Kakac
,
S.
, 1998,
AIChE J.
0001-1541,
44
, pp.
2410
2422
.
4.
Singh
,
D.
,
Lu
,
D. M.
, and
Djilali
,
N.
, 1999,
Int. J. Eng. Sci.
0020-7225,
37
, pp.
431
452
.
5.
Nguyen
,
T. V.
, and
White
,
R. E.
, 1993,
J. Electrochem. Soc.
0013-4651,
140
(
8
), pp.
2178
2186
.
6.
Um
,
S.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
, 2000,
J. Electrochem. Soc.
0013-4651,
147
, pp.
4485
4493
.
7.
Mazumder
,
S.
, and
Cole
,
J. V.
, 2003,
J. Electrochem. Soc.
0013-4651,
150
, pp.
1503
1509
.
8.
Su
,
A.
,
Weng
,
F.-B.
, and
Chiu
,
Y. C.
, 2005,
Int. J. Energy Res.
0363-907X,
29
, pp.
409
425
.
9.
Berning
,
T.
,
Lu
,
D. M.
, and
Djilali
,
N.
, 2002,
J. Power Sources
0378-7753,
106
, pp.
284
294
.
10.
Wang
,
L.
, and
Liu
,
H.
, 2004,
J. Power Sources
0378-7753,
134
, pp.
185
196
.
11.
Hu
,
G.
,
Fan
,
J.
,
Chen
,
S.
,
Liu
,
Y.
, and
Cen
,
K.
, 2004,
J. Power Sources
0378-7753,
136
, pp.
1
9
.
12.
Mench
,
M.
,
Wang
,
C. Y.
, and
Ishikawa
,
M.
, 2003,
J. Electrochem. Soc.
0013-4651,
150
, pp.
1052
1059
.
13.
Hakenjos
,
A.
,
Muenter
,
H.
,
Wittsadt
,
U.
, and
Hebling
,
C.
, 2004,
J. Power Sources
0378-7753,
131
, pp.
213
216
.
14.
Satija
,
R.
,
Jacobson
,
D. L.
,
Arif
,
M.
, and
Werner
,
S. A.
, 2004,
J. Power Sources
0378-7753,
129
, pp.
238
245
.
15.
Weng
,
F. B.
,
Su
,
A.
,
Jung
,
G. B.
,
Chiu
,
Y. C.
, and
Chan
,
S. H.
, 2005,
J. Power Sources
0378-7753,
145
, pp.
546
554
.
16.
Weng
,
F. B.
,
Su
,
A.
,
Lin
,
Y. T.
,
Jung
,
G. B.
, and
Chen
,
Y. M.
, 2005,
ASME J. Fuel Cell Sci. Technol.
1550-624X,
2
, pp.
197
201
.
17.
Mench
,
M. M.
,
Burford
,
D. J.
, and
Davis
,
T. W.
, 2003,
Proceedings of IMECE’03, 2003 ASME Int. Mech. Eng. Congress & Exposition
, Washington, D.C., Nov. pp.
16
21
.
You do not currently have access to this content.