Performance of individual cells in an operating polymer electrolyte membrane (PEM) fuel cell stack is different from each other because of inherent manufacturing tolerances of the cell components and unequal operating conditions for the individual cells. In this paper, first, effects of different operating conditions on performance of the individual cells in a two-cell PEM fuel cell stack have been experimentally investigated. The results of the experiments showed the presence of a voltage difference between the two cells that cannot be manipulated by operating conditions. The temperature of the supplying air among others predominantly influences the individual cell voltages. In addition, those effects are explored by using a dynamic model of a stack that has been developed. The model uses electrochemical voltage equations, dynamic water balance in the membrane, energy balance, and diffusion in the gas diffusion layer, reflecting a two-phase phenomenon of water. Major design parameters and an operating condition by conveying simulations have been changed to analyze sensitivity of the parameters on the performance, which is then compared with experimental results. It turns out that proton conductivity of the membrane in cells among others is the most influential parameter on the performance, which is fairly in line with the reading from the experimental results.

1.
Wöhr
,
M.
,
Bolwin
,
K.
,
Schnurnberger
,
W.
,
Fischer
,
M.
,
Neubrand
,
W.
, and
Eigenberger
,
G.
, 1998, “
Dynamic Modeling and Simulation of a Polymer Membrane Fuel Cell Including Mass Transport Limitation
,”
Int. J. Hydrogen Energy
0360-3199,
23
, pp.
213
218
.
2.
Yan
,
Q.
,
Toghiani
,
H.
, and
Causey
,
H.
, 2006, “
Steady State and Dynamic Performance of Proton Exchange Membrane Fuel Cells (PEMFCs) Under Various Operating Conditions and Load Changes
,”
J. Power Sources
0378-7753,
161
, pp.
492
502
.
3.
Santarelli
,
M. G.
, and
Torchio
,
M. F.
, 2007, “
Experimental Analysis of the Effects of the Operating Variables on the Performance of a Single PEMFC
,”
Energy Convers. Manage.
0196-8904,
48
, pp.
40
51
.
4.
Wang
,
L.
, and
Liu
,
H.
, 2004, “
Performance Studies of PEM Fuel Cells With Interdigitated Flow Fields
,”
J. Power Sources
0378-7753,
134
, pp.
185
196
.
5.
Wang
,
L.
,
Husar
,
A.
,
Zhou
,
T.
, and
Liu
,
H.
, 2003, “
A parametric Study of PEM Fuel Cell Performances
,”
Int. J. Hydrogen Energy
0360-3199,
28
, pp.
1263
1272
.
6.
Hwang
,
J. J.
, and
Hwang
,
H. S.
, 2002, “
Parametric Studies of a Double-Cell Stack of PEMFC Using Grafoil™ Flow-Field Plates
,”
J. Power Sources
0378-7753,
104
, pp.
24
32
.
7.
Wahdame
,
B.
,
Candusso
,
D.
, and
Kauffmann
,
J. M.
, 2006, “
Study of Gas Pressure and Flow Rate Influences on a 500W PEM Fuel Cell, Thanks to the Experimental Design Methodology
,”
J. Power Sources
0378-7753,
156
, pp.
92
99
.
8.
Yan
,
W. M.
,
Mei
,
S. C.
,
Soong
,
C. Y.
,
Liu
,
Z. S.
, and
Song
,
D.
, 2006, “
Experimental Study on the Performance of PEM Fuel Cells With Interdigitated Flow Channels
,”
J. Power Sources
0378-7753,
160
, pp.
116
122
.
9.
Buchi
,
F. N.
, and
Scherer
,
G. G.
, 1996, “
In Situ Resistance Measurements of Nafion® 117 Membranes in Polymer Electrolyte Fuel Cells
,”
J. Electroanal. Chem.
0022-0728,
404
, pp.
37
43
.
10.
Anantaraman
,
A. V.
, and
Gardner
,
C. L.
, 1996, “
Study on Ion-Exchange Membranes. Part 1. Effect of Humidity on Conductivity of Nafion®
,”
J. Electroanal. Chem.
0022-0728,
414
, pp.
155
120
.
11.
Amphlett
,
J. C.
,
Baumert
,
R. M.
,
Mann
,
R. F.
,
Peppley
,
B. A.
, and
Roberge
,
P. R.
, 1995, “
Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell. I. Mechanistic Model Development
,”
J. Electrochem. Soc.
0013-4651,
142
, pp.
1
8
.
12.
Williams
,
M. V.
,
Kunz
,
H. R.
, and
Fenton
,
J. M.
, 2004, “
Operation of Nafion®-Based PEM Fuel Cells With No External Humidification: Influence of Operating Conditions and Gas Diffusion Layers
,”
J. Power Sources
0378-7753,
135
, pp.
122
134
.
13.
Amphlett
,
J. C.
,
Baumert
,
R. M.
,
Mann
,
R. F.
,
Peppley
,
B. A.
, and
Roberge
,
P. R.
, 1995, “
Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell. II. Empirical model Development
,”
J. Electrochem. Soc.
0013-4651,
142
, pp.
9
15
.
14.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
, 1991, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
0013-4651,
138
, pp.
2334
2341
.
15.
Torchio
,
M. F.
, and
Santarelli
,
M. G.
, 2005, “
Experimental Analysis of the CHP Performance of a PEMFC Stack by a 24 Factorial Design
,”
J. Power Sources
0378-7753,
149
, pp.
33
43
.
16.
Ferng
,
Y. M.
,
Tzang
,
Y. C.
,
Pei
,
B. S.
,
Sun
,
C. C.
, and
Su
,
A.
, 2004, “
Analytical and Experimental Investigations of Proton Exchange Membrane Fuel Cell
,”
Int. J. Hydrogen Energy
0360-3199,
29
, pp.
381
391
.
17.
Mennola
,
T.
,
Mikkola
,
M.
,
Noponen
,
M.
,
Hottinen
,
T.
, and
Lund
,
P.
, 2002, “
Measurement of Ohmic Voltage Losses in Individual Cells of a PEMFC Stack
,”
J. Power Sources
0378-7753,
112
, pp.
261
272
.
18.
Yuan
,
X.
,
Sun
,
J. C.
,
Wang
,
H.
, and
Zhang
,
J.
, 2006, “
AC Impedance Diagnosis of a 500W PEM Fuel Cell Stack Part II: Individual Cell Impedance
,”
J. Power Sources
0378-7753,
161
, pp.
929
937
.
19.
Rodatz
,
P.
,
Buchi
,
F.
,
Onder
,
C.
, and
Guzzella
,
L.
, 2004, “
Operational Aspects of a Large PEFC Stack Under Practical Conditions
,”
J. Power Sources
0378-7753,
128
, pp.
208
217
.
20.
Nguyen
,
T. V.
, and
White
,
R. E.
, 1993, “
A Water and Heat Management Model for Proton-Exchange-membrane Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
140
, pp.
2178
2186
.
21.
Mo
,
Z. J.
,
Zhn
,
X. J.
,
Wei
,
L. Y.
, and
Cao
,
G. Y.
, 2006, “
Parameter Optimization for a PEMFC Model With a Hybrid Genetic Algorithm
,”
Int. J. Energy Res.
0363-907X,
30
, pp.
585
597
.
22.
Nam
,
J. H.
, and
Kaviany
,
M.
, 2003, “
Effective Diffusivity and Water-Saturation Distribution in Single and Two-Layer PEMFC Diffusion Medium
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
4595
4611
.
23.
McKay
,
D. A.
,
Ott
,
W. T.
, and
Stefanopoulou
,
A. G.
, 2005, “
Modeling, Parameter Identification, and Validation of Reactant and Water Dynamics for a Fuel Cell Stack
,” ASME Paper No. IMECE2005-81484.
24.
Shan
,
Y.
, and
Choe
,
S. Y.
, 2005, “
A High Dynamic PEM Fuel Cell Model With Temperature Effects
,”
J. Power Sources
0378-7753,
145
, pp.
30
39
.
25.
Kroger
,
D. G.
, 1984, “
Radiator Characterization and Optimization
,” SAE Paper No. 840380.
26.
Gurski
,
S.
, 2002, “
Cold Start Effects on Performance and Efficiency for Vehicle Fuel Cell System
,” Master thesis, Virginia Polytechnic Institute and State University, Blacksburg.
27.
Williams
,
M. V.
,
Kunz
,
H. R.
, and
Fenton
,
J. M.
, 2004, “
Operation of Nafion®-Based PEM Fuel Cells With No External Humidification: Influence of Operating Conditions and Gas Diffusion Layers
,”
J. Power Sources
0378-7753,
135
, pp.
122
134
.
28.
Larminie
,
J.
, and
Dicks
,
A.
, 2003,
Fuel Cell Systems Explained
, 2nd ed.,
Wiley
,
New York
.
You do not currently have access to this content.