One of the key obstacles precluding the maturation and commercialization of planar solid oxide fuel cells has been the absence of a robust sealant. A computational model has been developed in conjunction with leakage experiments at Oak Ridge National Laboratory. The aforementioned model consists of three components: a macroscopic model, a microscopic model, and a mixed lubrication model. The macroscopic model is a finite element representation of a preloaded metal-metal seal interface, which is used to ascertain macroscopic stresses and deformations. The microscale contact mechanics model accounts for the role of surface roughness in determining the mean interfacial gap at the sealing interface. In particular, a new multiscale fast Fourier transform-based model is used to determine the gap. An averaged Reynolds equation derived from mixed lubrication theory is then applied to approximate the leakage flow across the rough annular interface. The composite model is applied as a predictive tool for assessing how certain physical parameters (i.e., seal material composition, compressive applied stress, surface finish, and elastic thermophysical properties) affect seal leakage rates. The leakage results predicted by the aforementioned computational leakage model are then compared with experimental results.

1.
Chou
,
Y. -S.
,
Stevenson
,
J. W.
, and
Chick
,
L. A.
, 2002, “
Ultra-Low Leak Rate of Hybrid Compressive Mica Seals for Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
112
(
1
), pp.
130
136
.
2.
Chou
,
Y. -S.
, and
Stevenson
,
J. W.
, 2005, “
Long-Term Thermal Cycling of Phlogopite Mica-Based Compressive Seals for Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
140
(
2
), pp.
340
345
.
3.
Chou
,
Y. -S.
, and
Stevenson
,
J. W.
, 2005, “
Compressive Mica Seals for Solid Oxide Fuel Cells
,”
Proceedings from Materials Solutions 2004 on Joining of Advanced and Specialty Materials
, pp.
132
139
.
4.
Jackson
,
R. L.
, and
Streator
,
J. L.
, 2006, “
A Multi-Scale Model for Contact Between Rough Surfaces
,”
Wear
0043-1648,
261
(
11–12
), pp.
1337
1347
.
5.
Green
,
C. K.
,
Streator
,
J. L.
, and
Haynes
,
C.
, 2006, “
Modeling Leakage With Mica-Based Compressive Seals for Solid Oxide Fuel Cells
,”
Proceedings of IMECE2006: 2006 ASME International Mechanical Engineering Congress and Exposition
, Chicago, IL, Nov. 10.
6.
Pao
,
Y. -H.
,
Jih
,
E.
,
Artz
,
B. E.
, and
Cathey
,
L. W.
, 1992, “
A Note on the Implementation of Temperature Dependent Coefficient of Thermal Expansion (CTE) in ABAQUS
,”
ASME J. Electron. Packag.
1043-7398,
114
(
4
), pp.
470
472
.
7.
Whitehouse
,
D. J.
, and
Archard
,
J. F.
, 1970, “
The Properties of Random Surface of Significance in Their Contact
,”
Proc. R. Soc. London, Ser. A
0950-1207,
316
(
1524
), pp.
97
121
.
8.
McCool
,
J. I.
, 1986, “
Comparison of Models for the Contact of Rough Surfaces
,”
Wear
0043-1648,
107
(
1
), pp.
37
60
.
9.
Persson
,
B. N. J.
, 2001, “
Theory of Rubber Friction and Contact Mechanics
,”
J. Chem. Phys.
0021-9606,
115
(
8
), pp.
3840
3861
.
10.
Majumdar
,
A.
, and
Bhushan
,
B.
, 1990, “
Role of Fractal Geometry in Roughness Characterization and Contact Mechanics of Surfaces
,”
ASME J. Tribol.
0742-4787,
112
(
2
), pp.
205
216
.
11.
Zilberman
,
S.
, and
Persson
,
B. N. J.
, 2003, “
Nanoadhesion of Elastic Bodies: Roughness and Temperature Effects
,”
J. Chem. Phys.
0021-9606,
118
(
14
), pp.
6473
6480
.
12.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
, 1987, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
109
(
2
), pp.
257
263
.
13.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
, 1966, “
Contact of Nominally Flat Rough Surfaces
,”
Proc. R. Soc. London, Ser. A
0950-1207,
A295
, pp.
300
319
.
14.
Dong
,
W. P.
,
Sullivan
,
P. J.
, and
Stout
,
K. J.
, 1994, “
Comprehensive Study of Parameters for Characterising Three-Dimensional Surface Topography: III: Parameters for Characterising Amplitude and Some Functional Properties
,”
Wear
0043-1648,
178
(
1–2
), pp.
29
43
.
15.
Westergaard
,
H. M.
, 1939, “
Bearing Pressures and Cracks
,”
ASME J. Appl. Mech.
0021-8936,
6
(
2
), pp.
49
53
.
16.
Johnson
,
K. L.
,
Greenwood
,
J. A.
, and
Higginson
,
J. G.
, 1985, “
The Contact of Elastic Regular Wavy Surfaces
,”
Int. J. Mech. Sci.
0020-7403,
27
(
6
), pp.
383
396
.
17.
Hamrock
,
B. J.
,
Schmid
,
S. R.
, and
Jacobson
,
B. O.
, 2004,
Fundamentals of Fluid Film Lubrication
,
Marcel Dekker
,
New York
.
18.
Patir
,
N.
, and
Cheng
,
H. S.
, 1978, “
Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
ASME J. Lubr. Technol.
0022-2305,
100
(
1
), pp.
12
17
.
19.
Chou
,
Y. -S.
, and
Stevenson
,
J. W.
, 2002, “
Thermal Cycling and Degradation Mechanisms of Compressive Mica-Based Seals for Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
112
(
2
), pp.
376
383
.
20.
Schweitzer
,
P. A.
, 2003,
Metallic Materials: Physical, Mechanical, and Corrosion Properties
,
Marcel Dekker
,
New York
.
21.
Wu
,
X.
,
Pan
,
X.
,
Mabon
,
J. C.
,
Li
,
M.
, and
Stubbins
,
J. F.
, 2006, “
The Role of Deformation Mechanisms in Flow Localization of 316L Stainless Steel
,”
J. Nucl. Mater.
0022-3115,
356
(
1–3
), pp.
70
77
.
22.
Lide
,
D. R.
, ed., 1992,
Handbook of Chemistry and Physics
, 73rd ed.,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.