Abstract

Automating quality control has been an ongoing effort, especially when manufacturing large flip-chips. One such method is through employing the convolutional neural network (CNN). This work studied the optimum setup of the Mask region-based convolutional neural network (RCNN) model’s accuracy in analyzing asymmetrical, large-amount ball grid array (BGA) flip-chip underfilling void formation and its size relative to the underfill region. Experimental images of the through-scan acoustic microscope (TSAM) of BGA underfill are collected, preprocessed, and trained with the Mask RCNN model by tweaking its backbone architecture and hyperparameter. Extraction of the detected region size is computed with a histogram. Otsu’s thresholding method and the model’s performance in generating the results with its accuracy relative to real-scale images are evaluated based on the customization done with the CNN and thresholding model. The Mask RCNN-ResNet101-FPN-Custom with Otsu’s thresholding method yields the best-performing result in both capturing void(s) in TSAM images up to 96.40% in accuracy and computing the void percentage relative to the underfilling region with a low percentage error of 1.70%. The study provides insight to improve further capturing and computing void presence and size, allowing manufacturers to leverage optimized CNN architecture and image segmentation thresholding algorithm to expedite automated quality checking in a manufacturing process, reducing lead cost.

References

1.
Ling
,
C.
,
Azahari
,
M. T.
,
Abas
,
M. A.
, and
Ng
,
F. C.
,
2024
, “
Deep Learning and Analytical Study of Void Regional Formation in Flip-Chip Underfilling Process
,”
Soldering Surf. Mount Technol.
,
36
(
1
), pp.
60
68
.10.1108/SSMT-06-2023-0028
2.
Abas
,
A.
,
Haslinda
,
M. S.
,
Ishak
,
M. H. H.
,
Nurfatin
,
A. S.
,
Abdullah
,
M. Z.
, and
Che Ani
,
F.
,
2016
, “
Effect of ILU Dispensing Types for Different Solder Bump Arrangements on CUF Encapsulation Process
,”
Microelectron. Eng.
, 163, pp.
83
97
.10.1016/j.mee.2016.06.010
3.
Nashrudin
,
M. N.
,
Ng
,
F. C.
,
Abas
,
A.
,
Abdullah
,
M. Z.
,
Ali
,
M.
, and
Samsudin
,
Z.
,
2022
, “
Prediction of the Void Formation in No-Flow Underfill Process Using Machine Learning-Based Algorithm
,”
Microelectron. Reliab.
,
135
, p.
114586
.10.1016/j.microrel.2022.114586
4.
Mei
,
J.
,
Haug
,
R.
,
Hinderberger
,
S.
,
Grözinger
,
T.
, and
Zimmermann
,
A.
,
2019
, “
Void Formation in Solder Joints Under Power Cycling Conditions and Its Effect on Reliability
,”
Microelectron. Reliab.
,
100–101
, p.
113350
.10.1016/j.microrel.2019.06.042
5.
Ma
,
J-Q.
,
Kong
,
F-H.
,
Ma
,
P-J.
, and
Su
,
X-H.
, 2005, “
Detection of Defects at BGA Solder Joints by Using X-Ray Imaging
,”
2005 International Conference on Machine Learning and Cybernetics
, Guangzhou, China, Aug. 18–21, pp.
5139
5143
.10.1109/ICMLC.2005.1527849
6.
Peng
,
S.
, and
Nam
,
H. D.
,
2012
, “
Void Defect Detection in Ball Grid Array X-Ray Images Using a New Blob Filter
,”
J. Zhejiang Univ. Sci. C
,
13
(
11
), pp.
840
849
.10.1631/jzus.C1200065
7.
Said
,
A. F.
,
Bennett
,
B. L.
,
Karam
,
L. J.
,
Siah
,
A.
,
Goodman
,
K.
, and
Pettinato
,
J. S.
,
2012
, “
Automated Void Detection in Solder Balls in the Presence of Vias and Other Artifacts
,”
IEEE Trans. Compon. Packaging Manuf. Technol.
,
2
(
11
), pp.
1890
1901
.10.1109/TCPMT.2011.2182613
8.
Nuanprasert
,
S.
,
Baba
,
S.
, and
Suzuki
,
T.
,
2015
, “
An Efficient Method of Occluded Solder Ball Segmentation for Automated BGA Void Defect Inspection Using X-Ray Images
,”
41st Annual Conference of the IEEE Industrial Electronics Society, IECON 2015
, Yokohama, Japan, Nov. 9–12, pp. 00
3308
–00
3313
.10.1109/IECON.2015.7392610
9.
Marc van
,
V.
,
2018
, “
Void Detection in Solder Bumps With Deep Learning
,”
Microelectron. Reliab.
,
88–90
, pp.
315
320
.10.1016/j.microrel.2018.06.081
10.
Wankerl
,
H.
,
Stern
,
M. L.
,
Altieri-Weimar
,
P.
,
Al-Baddai
,
S.
,
Lang
,
K. J.
,
Roider
,
F.
, and
Lang
,
E. W.
,
2020
, “
Fully Convolutional Networks for Void Segmentation in X-Ray Images of Solder Joints
,”
J. Manuf. Processes
,
57
, pp.
762
767
.10.1016/j.jmapro.2020.07.021
11.
Azahari
,
M. T.
,
Ling
,
C.
,
Abas
,
M. A.
, and
Ng
,
F. C.
,
2025
, “
Effect of Dispensing Type on Void Formation Using Convolutional Neural Network
,”
ASME J. Electron. Packag.
,
147
(
1
), p.
011006
.10.1115/1.4065078
12.
Ling
,
C.
,
Azahari
,
M. T.
,
Abas
,
M. A.
, and
Ng
,
F. C.
,
2025
, “
Correlation Study on Voiding in Underfill of Large Quantity Ball Grid Array Chip Using Machine Learning
,”
ASME J. Electron. Packag.
,
147
(
1
), p.
011001
.10.1115/1.4065077
13.
Wang
,
J.
,
Lin
,
B.
,
Li
,
G.
,
Zhou
,
Y.
,
Zhong
,
L.
,
Li
,
X.
, and
Zhang
,
X.
,
2023
, “
YOLO-X-ray: A Bubble Defect Detection Algorithm for Chip X-Ray Images Based on Improved YOLOv5
,”
Electronics
,
12
(
14
), p.
3060
.10.3390/electronics12143060
14.
He
,
K.
,
Gkioxari
,
G.
,
Dollár
,
P.
, and
Girshick
,
R.
,
2017
, “
Mask R-CNN
,” IEEE International Conference on Computer Vision (
ICCV
), Venice, Italy, Oct. 22–29, pp. 2980–2988.10.1109/ICCV.2017.322
15.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
,
2016
, “
Deep Residual Learning for Image Recognition
,” 2016 IEEE Conference on Computer Vision and Pattern Recognition (
CVPR
), Las Vegas, NV, June 27–30, pp. 770–778.10.1109/CVPR.2016.90
16.
Nguyen
,
V.
,
2019
, “Bayesian Optimisation for Accelerating Hyper-Parameter Tuning,” IEEE Second International Conference on Artificial Intelligence and Knowledge Engineering (
AIKE
), Sardinia, Italy, June 3–5, pp.
302
305
.10.1109/AIKE.2019.00060
17.
Daniel Ratna Raju
,
P.
, and
Neelima
,
G.
,
2012
, “
Image Segmentation by Using Histogram Thresholding
,”
Int. J. Comput. Sci. Eng. Technol.
,
2
(
1
), pp.
776
779
.https://ijcset.net/docs/Volumes/volume2issue1/ijcset2012020103.pdf
18.
Otsu
,
N.
,
1979
, “
A Threshold Selection Method From Gray-Level Histograms
,”
IEEE Trans. Syst., Man, Cybern.
,
9
(
1
), pp.
62
66
.10.1109/TSMC.1979.4310076
19.
IPC
,
2014
, “
Acceptability of Electronic Assemblies
,” Revision G–October 2017 Supersedes Revision F, 8.3.12.4, July
IPC-A-610-G,
pp.
8
93
.https://www.ipc.org/TOC/IPC-A-610G.pdf
20.
Watanabe
,
S.
,
2023
, “
Tree-Structured Parzen Estimator: Understanding Its Algorithm Components and Their Roles for Better Empirical Performance
,”
arXiv:2304.11127
.10.48550/arXiv.2304.11127
21.
Alzubaidi
,
L.
,
Zhang
,
J.
,
Humaidi
,
A. J.
,
Al-Dujaili
,
A.
,
Duan
,
Y.
,
Al-Shamma
,
O.
,
Santamaría
,
J.
,
Fadhel
,
M. A.
,
Al-Amidie
,
M.
, and
Farhan
,
L.
,
2021
, “
Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions
,”
J. Big Data
,
8
(
1
), p.
53
.10.1186/s40537-021-00444-8
22.
Chen
,
X.
,
Wu
,
Y.
,
He
,
X.
, and
Ming
,
W.
,
2023
, “
A Comprehensive Review of Deep Learning-Based PCB Defect Detection
,”
IEEE Access
,
11
, pp.
139017
139038
.10.1109/ACCESS.2023.3339561
23.
Schiele
,
T.
, Jansche, A., Bernthaler, T., Kaiser, A., Pfister, D., Späth-Stockmeier, S., and Hollerith, C.,
2021
, “
Comparison of Deep Learning-Based Image Segmentation Methods for the Detection of Voids in X-Ray Images of Microelectronic Components
,” IEEE 17th International Conference on Automation Science and Engineering (
CASE
), Lyon, France, Aug. 23–27, pp.
1320
1325
.10.1109/CASE49439.2021.9551671
24.
Josher
,
G.
,
Chaurasia
,
A.
, and
Qiu
,
J.
,
2023
, “
YOLO by Ultralytics
,” GitHub, Online, accessed Oct. 11, 2024, https://github.com/ultralytics/ultralytics
25.
Ren
,
S.
,
He
,
K.
,
Girshick
,
R.
, and
Sun
,
J.
,
2017
, “
Faster R-CNN: Towards Real-Time Object Detection With Region Proposal Networks
,”
IEEE Trans. Pattern Anal. Machine Intel.
, 39(6), pp.
1137
1149
.10.1109/TPAMI.2016.2577031
You do not currently have access to this content.