The investigated combustor employs injection of liquid fuel (ethanol) into the strong cross-flow of air using a round tube to achieve effective fuel atomization in non-premixed mode of operation. The reverse-flow configuration (air injection from the exit end) allows effective internal product gas recirculation and stabilization of the reaction zone. This apparently suppresses near-stoichiometric reactions and hot spot regions resulting in low pollutant (NOx and CO) emissions in the non-premixed mode. The combustor was tested at thermal intensity variation from 19 to 39 MW/m3 atm with direct injection (DI) of liquid fuel in cross-flow of air injection with two fuel injection diameters of 0.5 mm (D1) and 0.8 mm (D2). The combustion process was found to be stable with NOx emissions of 8 ppm (for D1) and 9 ppm (for D2), the CO emissions were 90 ppm for D1 and 120 ppm for D2, at an equivalence ratio (ϕ) of 0.7. Macroscopic spray properties of the fuel jet in cross-flow were investigated using high-speed imaging techniques in unconfined and nonreacting conditions. It was found that the fuel jet in smaller fuel injection diameter (D1) case penetrated farther than that in D2 case due to higher fuel injection momentum, thus possibly resulting in a finer spray and better fuel-oxidizer mixing, and in turn leading to lower CO and NOx emissions in the D1 case as compared with the D2 case.

References

1.
Lieuwen
,
T. C.
, and
Yang
,
V.
,
2013
,
Gas Turbine Emissions
,
Cambridge University Press
,
Cambridge
.
2.
Lefebvre
,
A. H.
,
1999
,
Gas Turbine Combustion
, 2nd ed.,
Taylor & Francis
,
London
.
3.
Emami
,
M. D.
,
Shahbazian
,
H.
, and
Sunden
,
B.
,
2018
, “
Effect of Operational Parameters on Combustion and Emissions in an Industrial Gas Turbine Combustor
,”
ASME J. Energy Resour. Technol.
141
(
1
), p.
012202
.
4.
Miller
,
J. S.
, and
Bowman
,
C. T.
,
1989
, “
Mechanism and Modeling of Nitrogen Chemistry in Combustion
,”
Prog. Energy Combust. Sci.
15
(
4
), pp.
287
338
.
5.
Scenna
,
R.
, and
Gupta
,
A. K.
,
2015
, “
Preheats Effects on JP8 Reforming Under Volume Distributed Reaction Conditions
,”
ASME J. Energy Resour. Technol.
138
(
3
), p.
032202
.
6.
Said
,
A. O.
,
Khalil
,
A. E. E.
, and
Gupta
,
A. K.
,
2016
, “
Dual-Location Fuel Injection Effects on Emissions and NO*/OH* Chemiluminescence in a High Intensity Combustor
,”
ASME J. Energy Resour. Technol.
138
(
4
), p.
042208
.
7.
Scenna
,
R.
, and
Gupta
,
A. K.
,
2018
, “
The Influence of the Distributed Reaction Regime on Fuel Reforming Conditions
,”
ASME J. Energy Resour. Technol.
140
(
12
), p.
122002
.
8.
Arghode
,
V. K.
, and
Gupta
,
A. K.
,
2013
, “
Role of Thermal Intensity on Operational Characteristics of Ultra-Low Emission Colorless Distributed Combustion
,”
Appl. Energy
,
111
, pp.
930
956
.
9.
Arghode
,
V. K.
,
Gupta
,
A. K.
, and
Yu
,
K. H.
,
2010
, “
Investigation of Non-Premixed and Premixed Distributed Combustion for GT Application
,”
48th AIAA Aerospace Sciences Meeting Including New Horizons Forum and Aerospace Exposition
,
Orlando, FL
,
Jan. 4–7
.
10.
Arghode
,
V. K.
, and
Gupta
,
A. K.
,
2011
, “
Investigation of Reverse Flow Distributed Combustion for Gas Turbine Application
,”
Appl. Energy
,
88
(
4
), pp.
1096
1104
.
11.
Arghode
,
V. K.
, and
Gupta
,
A. K.
,
2011
, “
Investigation of Forward Flow Distributed Combustion for Gas Turbine Application
,”
Appl. Energy
,
88
(
1
), pp.
29
40
.
12.
Arghode
,
V. K.
, and
Gupta
,
A. K.
,
2010
, “
Effect of Flow Field for Colorless Distributed Combustion (CDC) for Gas Turbine Combustion
,”
Appl. Energy
,
87
(
5
), pp.
1631
1640
.
13.
Arghode
,
V. K.
, and
Gupta
,
A. K.
,
2009
, “
Effect of Confinement on Colorless Distributed Combustion for Gas Turbine Engines
,”
45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference Exhibit
,
Denver, CO
,
Aug. 2–5
.
14.
Khalil
,
A.
,
Arghode
,
V. K.
, and
Gupta
,
A. K.
,
2010
, “
Distributed Combustion With Swirl for Gas Turbine Application
,”
49th AIAA Aerospace Sciences Meeting Including New Horizons Forum and Aerospace Exposition
,
Orlando, FL
,
Jan. 4–7
.
15.
Kim
,
H. S.
,
Arghode
,
V. K.
, and
Gupta
,
A. K.
,
2009
, “
Combustion Characteristics of a Lean Premixed LPG-Air Combustor
,”
Int. J. Hydrogen Energy
,
34
(
2
), pp.
1045
1053
.
16.
Khalil
,
A.
, and
Gupta
,
A. K.
,
2016
, “
On the Flame-Flow Interaction Under Distributed Combustion Conditions
,”
Fuel
,
182
, pp.
17
26
.
17.
Gupta
,
A. K.
,
Bolz
,
S.
, and
Hasegawa
,
T.
,
1999
, “
Effect of Air Preheat Temperature and Oxygen Concentration on Flame Structure and Emission
,”
ASME J. Energy Resour. Technol.
121
(
3
), pp.
209
216
.
18.
Tsuji
,
H.
,
Gupta
,
A. K.
,
Hasegawa
,
T.
,
Katsuki
,
M.
,
Kishimoto
,
K.
, and
Morita
,
M.
,
2002
,
High Temperature Air Combustion: From Energy Conservation to Pollution Reduction
,
CRC Press
,
Boca Raton
.
19.
Cavaliere
,
A.
, and
de Joannon
,
M.
,
2004
, “
Mild Combustion
,”
Prog. Energy Combust. Sci.
30
(
4
), pp.
329
366
.
20.
Lammel
,
O.
,
Schmitz
,
G.
,
Aigner
,
M.
, and
Krebs
,
W.
,
2010
, “
FLOX® Combustion at High Power Density and High Flame
,”
ASME J. Eng. Gas Turbines Power
,
132
(
12
), p.
121503
.
21.
Weber
,
R.
, and
Smart
,
J. P.
,
2005
, “
On the (MILD) Combustion of Gaseous, Liquid, and Solid Fuels in High Temperature Preheated Air
,”
Proc. Combust. Inst.
30
(
2
), pp.
2623
2629
.
22.
Derudi
,
M.
, and
Rota
,
R.
,
2011
, “
Experimental Study of the Mild Combustion of Liquid Hydrocarbons
,”
Proc. Combust. Inst.
33
(
2
), pp.
3325
3332
.
23.
Reddy
,
V. M.
, and
Kumar
,
S.
,
2013
, “
Development of High Intensity Low Emission Combustor for Achieving Flameless Combustion of Liquid Fuels
,”
Propul. Power Res.
2
(
2
), pp.
139
147
.
24.
Crane
,
J.
,
Neumeier
,
Y.
,
Jagoda
,
J.
,
Seitzman
,
J.
, and
Zinn
,
B. T.
,
2006
, “
Stagnation Point Reverse-Flow Combustor Performance With Liquid Fuel Injection
,”
ASME Turbo Expo 2006: Power for Land, Sea, and Air
,
Barcelona, Spain
,
May 8–11
.
25.
Gopalakrishnan
,
P.
,
Bobba
,
M. K.
,
Radhakrishnan
,
A.
,
Neumeier
,
Y.
, and
Seitzman
,
J. M.
,
2007
, “
Characterization of the Reacting Flowfield in a Liquid-Fueled Stagnation Point Reverse Flow Combustor
,”
45th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, Nevada
,
Jan. 8–11
.
26.
Bobba
,
M. K.
,
Gopalakrishnan
,
P.
,
Periagaram
,
K.
, and
Seitzman
,
J. M.
,
2007
, “
Flame Structure and Stabilization Mechanisms in a Stagnation Point Reverse Flow Combustor
,”
ASME Turbo Expo 2007: Power for Land, Sea, and Air
,
Montreal, Canada
,
May 14–17
.
27.
Bobba
,
M. K.
,
Gopalakrishnan
,
P.
,
Radhakrishnan
,
A.
,
Seitzman
,
J. M.
,
Neumeier
,
Y.
,
Zinn
,
B. T.
, and
Jagoda
,
J.
,
2006
, “
Flame Stabilization and Mixing Studies in a Novel Ultra-Low Emissions Combustor
,”
44th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, Nevada
,
Jan. 9–12
.
28.
Arghode
,
V. K.
,
Khalil
,
A.
, and
Gupta
,
A. K.
,
2012
, “
Fuel Dilution and Liquid Fuel Operational Effects on Ultra-High Thermal Intensity Distributed Combustor
,”
Appl. Energy
,
95
, pp.
132
138
.
29.
Sharma,
P.
, and
Arghode,
V. K.
,
2017
, “
Experimental Investigation of Low Emission Liquid Fuelled Reverse Cross Flow Combustor
,”
ASME 2017 Gas Turbine India Conference
,
Bangalore, India
,
Dec. 7–8
.
30.
Sallam
,
K. A.
,
Aalburg
,
C.
, and
Faeth
,
G. M.
,
2004
, “
Breakup of Round Nonturbulent Liquid Jets in Gaseous Crossflow
,”
AIAA J.
42
(
12
), pp.
2529
2540
.
31.
Wu
,
P.-K.
,
Kirkendall
,
K. A.
,
Fuller
,
R. P.
, and
Nejad
,
A. S.
,
1997
, “
Breakup Processes of Liquid Jets in Subsonic Crossflows
,”
J. Propul. Power
,
13
(
1
), pp.
64
73
.
32.
Broumand
,
M.
, and
Birouk
,
M.
,
2016
, “
Liquid Jet in a Subsonic Gaseous Crossflow: Recent Progress and Remaining Challenges
,”
Prog. Energy Combust. Sci.
,
57
, pp.
1
29
.
33.
Becker
,
J.
, and
Hassa
,
C.
,
2003
, “
Liquid Fuel Placement and Mixing of Generic Aeroengine Premix Module at Different Operating Conditions
,”
ASME J. Eng. Gas Turbines Power
,
125
(
4
), pp.
901
908
.
34.
Becker
,
J.
,
Heitz
,
D.
, and
Hassa
,
C.
,
2004
, “
Spray Dispersion in a Counter-Swirling Double-Annular Air Flow at Gas Turbine Conditions
,”
Atomization Sprays
,
14
(
1
), pp.
15
35
.
35.
Gong
,
X.
,
Choi
,
K. J.
, and
Cernansky
,
N. P.
,
2006
, “
Lean Direct Wall Injection Mode Atomization of Liquid Jets in Swirling Flow
,”
J. Propul. Power
,
22
(
1
), pp.
209
211
.
36.
Tambe
,
S.
,
Elshamy
,
O.
, and
Jeng
,
S. M.
,
2007
, “
Liquid Jets Injected Transversely Into a Shear Layer
,”
45th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 8–11
.
37.
Tambe
,
S.
, and
Jeng
,
S. M.
,
2010
, “
Three-dimensional Penetration and Velocity Distribution of Liquid Jets Injected Transversely Into a Swirling Crossflow
,”
22nd Annual Conference on Liquid Atomization and Spray Systems (ILASS Americas)
,
Cincinnati, OH
,
May 16–19
.
38.
Sikroria
,
T.
,
Kushari
,
A.
,
Syed
,
S.
, and
Lovett
,
J. A.
,
2014
, “
Experimental Investigation of Liquid Jet Breakup in a Crossflow of a Swirling Air Stream
,”
ASME J. Eng. Gas Turbines Power
,
136
(
6
), p.
061501
.
39.
Xia
,
Y.
,
Alshehhi
,
M.
,
Hardalupas
,
Y.
, and
Khezzar
,
L.
,
2017
, “
Spray Characteristics of Free Air-on-Water Impinging Jets
,”
Int. J. Multiphase Flow
,
100
, pp.
86
103
.
40.
Jadidi
,
M.
,
Moghtadernejad
,
S.
, and
Dolatabadi
,
A.
,
2016
, “
Penetration and Breakup of Liquid Jet in Transverse Free Air Jet With Application in Suspension-Solution Thermal Sprays
,”
Mater. Des.
,
110
, pp.
425
435
.
41.
Jadidi
,
M.
,
Moghtadernejad
,
S.
, and
Dolatabadi
,
A.
,
2017
, “
Numerical Simulation of Primary Breakup of Round Nonturbulent Liquid Jets in Shear-Laden Gaseous Crossflow
,”
Atomization Sprays
,
27
(
3
), pp.
227
250
.
42.
Tan
,
Z. P.
,
Zinn
,
B. T.
,
Lubarsky
,
E.
,
Bibik
,
O.
,
Shcherbik
,
D.
, and
Shen
,
L.
,
2016
, “
A Moments-Based Algorithm for Optimizing the Information Mined in Post-Processing Spray Images
,”
Exp. Fluids
,
57
(
19
), pp.
1
13
.
43.
No
,
S.-Y.
,
2015
, “
A Review on Empirical Correlations for Jet/Spray Trajectory of Liquid Jet in Uniform Cross Flow
,”
Int. J. Spray Combust. Dyn.
7
(
4
), pp.
283
314
.
You do not currently have access to this content.