Abstract

Reverse osmosis (RO) desalination is the dominant desalination technology worldwide. The exergetic efficiency—which is recognized as a true measure from a thermodynamic viewpoint—of RO systems has been addressed by many researchers, but the inconsistencies in existing definitions prevent not only objective evaluation of the exergetic performance of an individual RO system, but also a logical comparison of the results among different systems and studies. Strictly following the thermodynamic and exergoeconomic principles, this study presents general and consistent definitions of exergetic efficiency for RO systems, aiming to promote uniformity in this important criterion. Considering the purpose and parametric features of RO systems, total exergy is decomposed into chemical and physical (mechanical plus thermal) exergies. The exergetic efficiencies of over 50 cases are calculated, and the results from different relationships and studies are compared and discussed. For the first time, the exergetic efficiency of thermally-enhanced RO systems is discussed, and the influence of thermal exergy consumption and the thermal exergy increments of permeate and brine is analyzed. Furthermore, the reasons behind the significant deviations in the results of some studies are revealed, and the defects or even mistakes in some of the existing definitions are pointed out. This work clarifies the definition and improves the understanding of the exergetic efficiency of RO desalination systems.

References

1.
Panagopoulos
,
A.
, and
Haralambous
,
K.-J.
,
2020
, “
Environmental Impacts of Desalination and Brine Treatment—Challenges and Mitigation Measures
,”
Mar. Pollut. Bull.
,
161
, p.
111773
.
2.
Wang
,
Y.
,
Morosuk
,
T.
, and
Cao
,
W.
,
2024
, “
Carbon Footprint of Seawater Desalination Technologies: A Review
,”
ASME J. Energy Resour. Technol.
,
146
(
8
), p.
080801
.
3.
Bejan
,
A.
,
Tsatsaronis
,
G.
, and
Maran
,
M.
,
1996
,
Thermal Design and Optimization
,
John Wiley & Sons, Inc.
,
New York
,
Chap. 3
.
4.
Blanco-Marigorta
,
A. M.
,
Lozano-Medina
,
A.
, and
Marcos
,
J. D.
,
2017
, “
A Critical Review of Definitions for Exergetic Efficiency in Reverse Osmosis Desalination Plants
,”
Energy
,
137
, pp.
752
760
.
5.
Khanarmuei
,
M.
,
Ahmadisedigh
,
H.
,
Ebrahimi
,
I.
,
Gosselin
,
L.
, and
Mokhtari
,
H.
,
2017
, “
Comparative Design of Plug and Recirculation RO Systems; Thermoeconomic: Case Study
,”
Energy
,
121
, pp.
205
219
.
6.
Blanco-Marigorta
,
A. M.
,
Lozano-Medina
,
A.
, and
Marcos
,
J. D.
,
2017
, “
The Exergetic Efficiency as a Performance Evaluation Tool in Reverse Osmosis Desalination Plants in Operation
,”
Desalination
,
413
, pp.
19
28
.
7.
Eshoul
,
N. M.
,
Agnew
,
B.
,
Anderson
,
A.
, and
Atab
,
M. S.
,
2017
, “
Exergetic and Economic Analysis of Two-Pass RO Desalination Proposed Plant for Domestic Water and Irrigation
,”
Energy
,
122
, pp.
319
328
.
8.
Haluch
,
V.
,
Zanoelo
,
E. F.
, and
Hermes
,
C. J. L.
,
2017
, “
Experimental Evaluation and Semi-Empirical Modeling of a Small-Capacity Reverse Osmosis Desalination Unit
,”
Chem. Eng. Res. Des.
,
122
, pp.
243
253
.
9.
Jamil
,
M. A.
, and
Zubair
,
S. M.
,
2017
, “
On Thermoeconomic Analysis of a Single-Effect Mechanical Vapour Compression Desalination System
,”
Desalination
,
420
, pp.
292
307
.
10.
Jamil
,
M. A.
,
Qureshi
,
B. A.
, and
Zubair
,
S. M.
,
2017
, “
Exergo-Economic Analysis of a Seawater Reverse Osmosis Desalination Plant With Various Retrofit Options
,”
Desalination
,
401
, pp.
88
98
.
11.
Eveloy
,
V.
,
Rodgers
,
P.
, and
Alili
,
A. A.
,
2017
, “
Multi-objective Optimization of a Pressurized Solid Oxide Fuel Cell—Gas Turbine Hybrid System Integrated With Seawater Reverse Osmosis
,”
Energy
,
123
, pp.
594
614
.
12.
Haryati
,
S.
,
Hamzah
,
A. B.
,
Goh
,
P. S.
,
Abdullah
,
M. S.
,
Ismail
,
A. F.
, and
Bustan
,
M. D.
,
2017
, “
Process Intensification of Seawater Reverse Osmosis Through Enhanced Train Capacity and Module Size—Simulation on Lanzarote IV SWRO Plant
,”
Desalination
,
408
, pp.
92
101
.
13.
Kim
,
Y.
,
Ihm
,
S.
, and
Woo
,
S.
,
2018
, “
Energy Efficiency Improvement of Gijang SWRO Plant in Busan, Korea
,”
Desalin. Water Treat.
,
112
, pp.
258
277
.
14.
Kowsari
,
S.
, and
Deymi-Dashtebayaz
,
M.
,
2021
, “
Energy, Exergy and Exergoeconomic (3E) Analysis and Multi-objective Optimization of a Closed-Circuit Desalination System With Side-Conduit
,”
Desalination
,
514
, p.
115154
.
15.
Ghamdi
,
A. A.
, and
Mustafa
,
I.
,
2022
, “
Exergy Analysis of a Seawater Reverse Osmosis Plant in Jeddah, Saudi Arabia
,”
Desalin. Water Treat.
,
264
, pp.
1
11
.
16.
Naminezhad
,
A.
, and
Mehregan
,
M.
,
2023
, “
4E Investigation of Solar-Driven RO and RRO Osmotic Desalination Systems From Water, Energy, and Environment Relevance Perspective: a Comparative Approach
,”
Appl. Water Sci.
,
13
(
2
), p.
44
.
17.
Shah
,
S. R.
, and
Winter V
,
A. G.
,
2023
, “
Evaluating the Production and Exergetic Performance of Point-of-Use Reverse Osmosis Devices for Brackish Water Desalination
,”
Desalin. Water Treat.
,
302
, pp.
1
14
.
18.
Sutariya
,
B.
, and
Amaliar
,
G.
,
2023
, “
“Thermodynamic Performance Assessment of a Community-Scale Brackish Water Reverse Osmosis Plant Using Exergy Analysis,” AQUA—Water Infrastructure
,”
Ecosyst. Soc.
,
72
(
10
), pp.
1867
1880
.
19.
Fitzsimons
,
L.
,
Corcoran
,
B.
,
Young
,
P.
, and
Foley
,
G.
,
2015
, “
Exergy Analysis of Water Purification and Desalination: A Study of Exergy Model Approaches
,”
Desalination
,
359
, pp.
212
224
.
20.
Sharqawy
,
M. H.
,
Zubair
,
S. M.
, and
Lienhard
,
J. H.
,
2011
, “
Second Law Analysis of Reverse Osmosis Desalination Plants: An Alternative Design Using Pressure Retarded Osmosis
,”
Energy
,
36
(
11
), pp.
6617
6626
.
21.
Romero-Ternero
,
V.
,
García-Rodríguez
,
L.
, and
Gómez-Camacho
,
C.
,
2005
, “
Exergy Analysis of a Seawater Reverse Osmosis Plant
,”
Desalination
,
175
(
2
), pp.
197
207
.
22.
El-Emam
,
R. S.
, and
Dincer
,
I.
,
2014
, “
Thermodynamic and Thermoeconomic Analyses of Seawater Reverse Osmosis Desalination Plant With Energy Recovery
,”
Energy
,
64
, pp.
154
163
.
23.
Qureshi
,
B. A.
, and
Zubair
,
S. M.
,
2016
, “
Exergetic Efficiency of NF, RO and EDR Desalination Plants
,”
Desalination
,
378
, pp.
92
99
.
24.
Yagnambhatt
,
S.
,
Khanmohammadi
,
S.
, and
Maisonneuve
,
J.
,
2024
, “
Reducing the Specific Energy Use of Seawater Desalination With Thermally Enhanced Reverse Osmosis
,”
Desalination
,
573
, p.
117163
.
25.
Nisan
,
S.
,
Commercon
,
B.
, and
Dardour
,
S.
,
2005
, “
A New Method for the Treatment of the Reverse Osmosis Process, With Preheating of the Feedwater
,”
Desalination
,
182
(
1–3
), pp.
483
495
.
26.
Li
,
C.
,
Besarati
,
S.
,
Goswami
,
Y.
,
Stefanakos
,
E.
, and
Chen
,
H.
,
2013
, “
Reverse Osmosis Desalination Driven by Low Temperature Supercritical Organic Rankine Cycle
,”
Appl. Energy
,
102
, pp.
1071
1080
.
27.
Morosuk
,
T.
, and
Tsatsaronis
,
G.
,
2019
, “
Splitting Physical Exergy: Theory and Application
,”
Energy
,
167
, pp.
698
707
.
28.
Lazzaretto
,
A.
, and
Tsatsaronis
,
G.
,
2006
, “
SPECO: A Systematic and General Methodology for Calculating Efficiencies and Costs in Thermal Systems
,”
Energy
,
31
(
8–9
), pp.
1257
1289
.
29.
Mistry
,
K. H.
,
McGovern
,
R. K.
,
Thiel
,
G. P.
,
Summers
,
E. K.
,
Zubair
,
S. M.
, and
Lienhard
,
J. H.
,
2011
, “
Entropy Generation Analysis of Desalination Technologies
,”
Entropy
,
13
(
10
), pp.
1829
1864
.
30.
Sharqawy
,
M. H.
,
Lienhard
,
J. H.
, and
Zubair
,
S. M.
,
2010
, “
Thermophysical Properties of Seawater: A Review of Existing Correlations and Data
,”
Desalin. Water Treat.
,
16
(
1–3
), pp.
354
380
.
31.
Nayar
,
K. G.
,
Sharqawy
,
M. H.
,
Banchik
,
L. D.
, and
Lienhard
,
J. H.
,
2016
, “
Thermophysical Properties of Seawater: A Review and New Correlations That Include Pressure Dependence
,”
Desalination
,
390
, pp.
1
24
.
32.
Alotaibi
,
S. A.
,
Ibrahim
,
O. M.
, and
Salamah
,
F. H.
, “
Energy and Exergy Analysis of Three Major Recirculating Multi-stage Flashing Desalination Plants in Kuwait
,”
J. Eng. Res.
, In Press.
33.
Nassrullah
,
H.
,
Anis
,
S. F.
,
Hashaikeh
,
R.
, and
Hilal
,
N.
,
2020
, “
Energy for Desalination: A State-of-the-Art Review
,”
Desalination
,
491
, p.
114569
.
34.
Mansouri
,
A. E.
,
Hasnaoui
,
M.
,
Amahmid
,
A.
, and
Hasnaoui
,
S.
,
2020
, “
Feasibility Analysis of Reverse Osmosis Desalination Driven by a Solar Pond in Mediterranean and Semi-Arid Climates
,”
Energy Convers. Manage.
,
221
, p.
113190
.
35.
Gao
,
C.
, and
Ruan
,
G.
,
2016
,
Seawater Desalination Technology and Engineering
,
Chemical Industry Press
,
Beijing, China
,
Chap. 4
.
36.
Delgado-Torres
,
A. M.
,
García-Rodríguez
,
L.
, and
del Moral
,
M. J.
,
2020
, “
Preliminary Assessment of Innovative Seawater Reverse Osmosis (SWRO) Desalination Powered by a Hybrid Solar Photovoltaic (PV)—Tidal Range Energy System
,”
Desalination
,
477
, p.
114247
.
37.
Eshoul
,
N. M.
,
Agnew
,
B.
,
Al-Weshahi
,
M. A.
, and
Atab
,
M. S.
,
2015
, “
Exergy Analysis of a Two-Pass Reverse Osmosis (RO) Desalination Unit With and Without an Energy Recovery Turbine (ERT) and Pressure Exchanger (PX)
,”
Energies
,
8
(
7
), pp.
6910
6925
.
38.
Macedonio
,
F.
,
Curcio
,
E.
, and
Drioli
,
E.
,
2007
, “
Integrated Membrane Systems for Seawater Desalination: Energetic and Exergetic Analysis, Economic Evaluation, Experimental Study
,”
Desalination
,
203
(
1–3
), pp.
260
276
.
39.
Liu
,
J.
,
Yuan
,
J.
,
Xie
,
L.
, and
Ji
,
Z.
,
2013
, “
Exergy Analysis of Dual-Stage Nanofiltration Seawater Desalination
,”
Energy
,
62
, pp.
248
254
.
40.
Khalid
,
F.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2016
, “
Comparative Assessment of CANDU 6 and Sodium-Cooled Fast Reactors for Nuclear Desalination
,”
Desalination
,
379
, pp.
182
192
.
41.
Mokhtari
,
H.
,
Ahmadisedigh
,
H.
, and
Ebrahimi
,
I.
,
2016
, “
Comparative 4E Analysis for Solar Desalinated Water Production by Utilizing Organic Fluid and Water
,”
Desalination
,
377
, pp.
108
122
.
42.
Eveloy
,
V.
,
Rodgers
,
P.
, and
Qiu
,
L.
,
2016
, “
Performance Investigation of a Power, Heating and Seawater Desalination Poly-Generation Scheme in an Off-Shore Oil Field
,”
Energy
,
98
, pp.
26
39
.
43.
Blanco-Marigorta
,
A. M.
,
Masi
,
M.
, and
Manfrida
,
G.
,
2014
, “
Exergo-Environmental Analysis of a Reverse Osmosis Desalination Plant in Gran Canaria
,”
Energy
,
76
, pp.
223
232
.
You do not currently have access to this content.