The mixing flows in microchannels were examined using numerical methods. To speed up fluid mixing, it is essential to generate lateral transport of mass. In this study, the mixing flow is disrupted by either placing grooves or block obstacles on the walls of the channels. Since the grooves or the blocks appear in a periodic configuration, the velocity is solved only in a section of the channel. With the repeating cycle of flow velocity field, the fluid concentration can be calculated throughout the entire length of the channel. Good agreement with experiments in the mixing performance justifies the present methodology. Two different channel configurations are under consideration: grooved channels and obstructed channels. The results reveal that with straight grooves, a well organized vortex flow is formed in the vertical plane along the groove, which leads to a helical flow in the channel. The mixing performance can be enhanced by having grooves on both the top and the bottom walls arranged in a staggered manner, by which the transversal velocity is largely increased. It is seen that the strength of the secondary flow and, thus, the mixing can be improved by suitably choosing geometric parameters of the groove, such as the depth, the width, and the oblique angle. It is also shown that the efficient mixing for the staggered herringbone type groove is due to the fluid stratification caused by the exchange of position of the resulted counter-rotating vortices. As for the obstructed channels, the flows are in essence two dimensional. Very strong transversal velocity can be produced by narrowing down the flow passage in the channel. However, the efficient mixing is obtained at the cost of large pressure head loss.

1.
Jacobson
,
S. C.
,
McKnight
,
T. E.
, and
Ramsey
,
J. M.
, 1999, “
Microfluidic Devices for Electrokinetically Driven Parallel and Serial Mixing
,”
Anal. Chem.
0003-2700,
71
, pp.
4455
4459
.
2.
Oddy
,
M. H.
,
Santiago
,
J. G.
, and
Mikkelsen
,
J. C.
, 2001, “
Electrokinetic Instability Micromixing
,”
Anal. Chem.
0003-2700,
73
, pp.
5822
5832
.
3.
Zhu
,
X.
, and
Kim
,
E. S.
, 1998, “
Microfluidic Motion Generation With Acoustic Waves
,”
Sens. Actuators, A
0924-4247,
66
, pp.
355
360
.
4.
Yang
,
Z.
,
Matsumoto
,
S.
,
Goto
,
H.
,
Matsumoto
,
M.
, and
Maeda
,
R.
, 2001, “
Ultrasonic Micromixer for Microfluidic Systems
,”
Sens. Actuators, A
0924-4247,
93
, pp.
266
272
.
5.
Mao
,
H.
,
Yang
,
T.
, and
Cremer
,
P. S.
, 2002, “
A Microfluidic Device with a Linear Temperature Gradient for Parallel and Combinatorial Measurements
,”
J. Am. Chem. Soc.
0002-7863,
124
(
16
), pp.
4432
4435
.
6.
Tsai
,
J.-H.
, and
Lin
,
L.
, 2002, “
Active Microfluidic Mixer and Gas Bubble Filter Driven by Thermal Bubble Micropump
,”
Sens. Actuators, A
0924-4247,
97–98
, pp.
665
671
.
7.
Fujii
,
T.
,
Sando
,
Y.
,
Higashino
,
K.
, and
Fujii
,
Y.
, 2003, “
A Plug and Play Microfluidic Device
,”
Lab Chip
1473-0197,
3
, pp.
193
197
.
8.
Glasgow
,
I.
, and
Aubry
,
N.
, 2003, “
Enhancement of Microfluidic Mixing Using Time Pulsing
,”
Lab Chip
1473-0197,
3
, pp.
114
120
.
9.
Niu
,
X.
, and
Lee
,
Y.-K.
, 2003, “
Efficient Spatial-Temporal Chaotic Mixing in Microchannels
,”
J. Micromech. Microeng.
0960-1317,
13
, pp.
454
462
.
10.
Ottino
,
J. M.
, 1989,
The Kinematics of Mixing: Stretching, Chaos, and Transport
,
Cambridge University Press
,
Cambridge
.
11.
Aref
,
H.
, 1984, “
Stirring by Chaotic Advection
,”
J. Fluid Mech.
0022-1120,
143
, pp.
1
21
.
12.
Aref
,
H.
, 2002, “
The Development of Chaotic Advection
,”
Phys. Fluids
1070-6631,
14
, pp.
1315
1325
.
13.
Mengeaud
,
V.
,
Josserand
,
J.
, and
Girault
,
H. H.
, 2002, “
Mixing Processes in a Zigzag Microchannel: Finite Element Simulation and Optical Study
,”
Anal. Chem.
0003-2700,
74
, pp.
4279
4286
.
14.
Liu
,
R. H.
,
Stremler
,
M. A.
,
Sharp
,
K. V.
,
Olsen
,
M. G.
,
Santiago
,
J. G.
,
Adrian
,
R. J.
,
Aref
,
H.
, and
Beebe
,
D. J.
, 2000, “
Passive Mixing in a Three-Dimensional Serpentine Microchannel
,”
J. Microelectromech. Syst.
1057-7157,
9
, pp.
190
197
.
15.
Stroock
,
A. D.
,
Dertinger
,
S. K.
,
Whitesides
,
G. M.
, and
Ajdari
,
A.
, 2002, “
Patterning Flows Using Grooved Surfaces
,”
Anal. Chem.
0003-2700,
74
, pp.
5306
5312
.
16.
Stroock
,
A. D.
,
Dertinger
,
S. K. W.
,
Ajdarim
,
A.
,
Mezic
,
I.
,
Stone
,
H. A.
, and
Whitesides
,
G. M.
, 2002, “
Chaotic Mixer for Microchannels
,”
Science
0036-8075,
295
, pp.
647
651
.
17.
Johnson
,
T. J.
,
Ross
,
D.
, and
Locascio
,
L. E.
, 2002, “
Rapid Microfluidic Mixing
,”
Anal. Chem.
0003-2700,
74
, pp.
45
51
.
18.
Kim
,
D. S.
,
Lee
,
S. W.
,
Kwon
,
T. H.
, and
Lee
,
S. S.
, 2004, “
A Barrier Embedded Chaotic Micromixer
,”
J. Micromech. Microeng.
0960-1317,
14
, pp.
798
805
.
19.
Howell
, Jr.,
P. B.
,
Mott
,
D. R.
,
Fertig
,
S.
,
Kaplan
,
C. R.
,
Golden
,
J. P.
,
Oran
,
E. S.
, and
Ligler
,
F. S.
, 2005, “
A Microfluidic Mixer with Grooves Placed on the Top and Bottom of the Channel
,”
Lab Chip
1473-0197,
5
, pp.
524
530
.
20.
Wang
,
H.
,
Iovenitti
,
P.
,
Harvey
,
E.
, and
Masood
,
S.
, 2003, “
Numerical Investigation of Mixing in Microchannels with Patterned Grooves
,”
J. Micromech. Microeng.
0960-1317,
13
, pp.
801
808
.
21.
Kang
,
T. G.
, and
Kwon
,
T. H.
, 2004, “
Colored Particle Tracking Method for Mixing Analysis of Chaotic Micromixers
,”
J. Micromech. Microeng.
0960-1317,
14
, pp.
891
899
.
22.
Mott
,
D. R.
,
Howell
, Jr.,
P. B.
,
Golden
,
J. P.
,
Kaplan
,
C. R.
,
Ligler
,
F. S.
, and
Oran
,
E. S.
, 2006, “
A Lagrangian Advection Routine Applied to Microfluidic Component Design
,”
44th AIAA Aerospace Sciences Meeting and Exhibit
, AIAA Paper No. 2006-1086.
23.
Schonfeld
,
F.
, and
Hardt
,
S.
, 2004, “
Simulation of Helical Flows in Microchannels
,”
AIChE J.
0001-1541,
50
(
4
), pp.
771
778
.
24.
Liu
,
Y. Z.
,
Kim
,
B. J.
, and
Sung
,
H. J.
, 2004, “
Two-Fluid Mixing in a Microchannel
,”
Int. J. Heat Fluid Flow
0142-727X,
25
, pp.
986
995
.
25.
Tsui
,
Y.-Y.
, and
Pan
,
Y.-F.
, 2006, “
A Pressure-Correction Method for Incompressible Flows Using Unstructured Meshes
,”
Numer. Heat Transfer, Part B
1040-7790,
49
, pp.
43
65
.
26.
Tsui
,
Y.-Y.
, and
Jung
,
S.-P.
, 2006, “
Analysis of the Flow in Grooved Pumps with Specified Pressure Boundary Conditions
,”
Vacuum
0042-207X,
81
, pp.
401
410
.
27.
Patankar
,
S. V.
,
Liu
,
C. H.
, and
Sparrow
,
E. M.
, 1977, “
Fully Developed Flow and Heat Transfer in Ducts Having Streamwise-Periodic Variations of Cross-Sectional Area
,”
ASME J. Heat Transfer
0022-1481,
99
, pp.
180
186
.
28.
Kelkar
,
K. M.
, and
Patankar
,
S. V.
, 1987, “
Numerical Prediction of Flow and Heat Transfer in a Parallel Plate Channel with Staggered Fins
,”
ASME J. Heat Transfer
0022-1481,
109
, pp.
25
30
.
29.
Murthy
,
J. Y.
, and
Mathur
,
S.
, 1997, “
Periodic Flow and Heat Transfer Using Unstructured Meshes
,”
Int. J. Numer. Methods Fluids
0271-2091,
25
, pp.
659
677
.
30.
Branebjerg
,
J.
,
Gravesen
,
P.
,
Krog
,
J. P.
, and
Nielsen
,
C. R.
, 1996, “
Fast Mixing by Lamination
,”
Proceedings of Ninth IEEE Int. Workshop on Micro Electro Mechanical Systems (MEMS’96)
,
San Diego, CA
, pp
441
446
.
31.
Schonfeld
,
F.
,
Hessel
,
V.
, and
Hofmann
,
C.
, 2004, “
An Optimized Split-and-Recombine Micro-Mixer with Uniform ‘Chaotic’ Mixing
,”
Lab Chip
1473-0197,
4
, pp.
65
69
.
32.
Wang
,
H.
,
Iovenitti
,
P.
,
Harvey
,
E.
, and
Masood
,
S.
, 2002, “
Optimizing Layout of Obstacles for Enhanced Mixing in Microchannels
,”
Smart Mater. Struct.
0964-1726,
11
, pp.
662
667
.
33.
Wang
,
R.
,
Lin
,
J.
, and
Li
,
H.
, 2007, “
Chaotic Mixing on a Micromixer with Barriers Embedded
,”
Chaos, Solitons Fractals
0960-0779,
33
, pp.
1362
1366
.
34.
Bhagat
,
A. A. S.
,
Peterson
,
E. T. K.
, and
Papautsky
,
I.
, 2007, “
A Passive Planar Micromixer with Obstructions for Mixing at Low Reynolds Numbers
,”
J. Micromech. Microeng.
0960-1317,
17
, pp.
1017
1024
.
35.
Nichols
,
K. P.
,
Ferullo
,
J. R.
, and
Baeumner
,
A. J.
, 2006, “
Recirculating, Passive Micromixer with a Novel Sawtooth Structure
,”
Lab Chip
1473-0197,
6
, pp.
242
246
.
You do not currently have access to this content.