Flow behavior in complex three-dimensional (3D) microscale domains is the key in the development of microcirculatory pathologies and the design of 3D microfluidics. While numerical simulations are common practice for the derivation of velocity fields in such domains, they are limited to known geometries. Current experimental methods such as micron-scale particle tracing comprise of intricate algorithmic approaches for the accurate tracing of numerous particles in a dense moving liquid suspension and are fundamentally limited in resolution to the finite size of the interrogated steps. Here, we introduce 3D streamlines image velocimetry (3D-SIV), a method to derive fluid velocity fields in arbitrary resolution for fully developed laminar flow in 3D geometries. Our approach utilizes 3D geometrical fitting and superimposed Delaunay triangulation to reconstruct streamtubes and to trace their volumetric changes. Our algorithm has applications in out-of-plane velocimetries, which we demonstrate in a 3D dilated curved geometry and in an ascending aorta. The 3D-SIV can be applied for high-resolution derivation of velocity fields in microcirculatory pathologies and to 3D microfluidic circuits, extending the potential of out-of-plane velocimetries to complex geometries and arbitrary resolution.

References

1.
Ezra
,
E.
,
Keinan
,
E.
,
Mandel
,
Y.
,
Boulton
,
M. E.
, and
Nahmias
,
Y.
,
2013
, “
Non-Dimensional Analysis of Retinal Microaneurysms: Critical Threshold for Treatment
,”
Integr. Biol.
,
5
(
3
), pp.
474
480
.
2.
Boussel
,
L.
,
Rayz
,
V.
,
McCulloch
,
C.
,
Martin
,
A.
,
Acevedo-Bolton
,
G.
,
Lawton
,
M.
,
Higashida
,
R.
,
Smith
,
W. S.
,
Young
,
W. L.
, and
Saloner
,
D.
,
2008
, “
Aneurysm Growth Occurs at Region of Low Wall Shear Stress: Patient-Specific Correlation of Hemodynamics and Growth in a Longitudinal Study
,”
Stroke
,
39
(
11
), pp.
2997
3002
.
3.
Tan
,
P. E.
,
Yu
,
P. K.
,
Cringle
,
S. J.
, and
Yu
,
D. Y.
,
2014
, “
Quantitative Assessment of the Human Retinal Microvasculature With or Without Vascular Comorbidity
,”
Invest. Ophthalmol. Visual Sci.
,
55
(
12
), pp.
8439
8452
.
4.
Squires
,
T. M.
, and
Quake
,
S. R.
,
2005
, “
Microfluidics: Fluid Physics at the Nanoliter Scale
,”
Rev. Mod. Phys.
,
77
(
3
), pp.
977
1026
.
5.
Kitson
,
P. J.
,
Rosnes
,
M. H.
,
Sans
,
V.
,
Dragone
,
V.
, and
Cronin
,
L.
,
2012
, “
Configurable 3D-Printed Millifluidic and Microfluidic 'Lab on a Chip' Reactionware Devices
,”
Lab Chip
,
12
(
18
), pp.
3267
3271
.
6.
Bhargava
,
K. C.
,
Thompson
,
B.
, and
Malmstadt
,
N.
,
2014
, “
Discrete Elements for 3D Microfluidics
,”
Proc. Natl. Acad. Sci. U. S. A.
,
111
(
42
), pp.
15013
15018
.
7.
Gross
,
B. C.
,
Erkal
,
J. L.
,
Lockwood
,
S. Y.
,
Chen
,
C.
, and
Spence
,
D. M.
,
2014
, “
Evaluation of 3D Printing and Its Potential Impact on Biotechnology and the Chemical Sciences
,”
Anal. Chem.
,
86
(
7
), pp.
3240
3253
.
8.
Waldbaur
,
A.
,
Rapp
,
H.
,
Lange
,
K.
, and
Rapp
,
B. E.
,
2011
, “
Let There Be Chip-Towards Rapid Prototyping of Microfluidic Devices: One-Step Manufacturing Processes
,”
Anal. Methods
,
3
(
12
), pp.
2681
2716
.
9.
Erickson
,
D.
,
2005
, “
Towards Numerical Prototyping of Labs-on-Chip: Modeling for Integrated Microfluidic Devices
,”
Microfluid. Nanofluid.
,
1
(
4
), pp.
301
318
.
10.
Arthur
,
J. K.
,
Ruth
,
D. W.
, and
Tachie
,
M. F.
,
2009
, “
PIV Measurements of Flow Through a Model Porous Medium With Varying Boundary Conditions
,”
J. Fluid Mech.
,
629
, pp.
343
374
.
11.
Elsinga
,
G. E.
, and
Ganapathisubramani
,
B.
,
2013
, “
Advances in 3D Velocimetry
,”
Meas. Sci. Technol.
,
24
(
2
), p.
020301
.
12.
Wereley
,
S. T.
, and
Meinhart
,
C. D.
,
2009
, “
Recent Advances in Micro-Particle Image Velocimetry
,”
Ann. Rev. Fluid Mech.
,
42
(
1
), pp.
557
576
.
13.
Katz
,
J.
, and
Sheng
,
J.
,
2009
, “
Applications of Holography in Fluid Mechanics and Particle Dynamics
,”
Ann. Rev. Fluid Mech.
,
42
(
1
), pp.
531
555
.
14.
Sheng
,
J.
,
Malkiel
,
E.
, and
Katz
,
J.
,
2006
, “
Digital Holographic Microscope for Measuring Three-Dimensional Particle Distributions and Motions
,”
Appl. Opt.
,
45
(
16
), pp.
3893
3901
.
15.
Bown
,
M. R.
,
MacInnes
,
J. M.
, and
Allen
,
R. W. K.
,
2007
, “
Three-Component Micro-PIV Using the Continuity Equation and a Comparison of the Performance With That of Stereoscopic Measurements
,”
Exp. Fluids
,
42
(
2
), pp.
197
205
.
16.
Sang Youl
,
Y.
, and
Kyung Chun
,
K.
,
2006
, “
3D Particle Position and 3D Velocity Field Measurement in a Microvolume Via the Defocusing Concept
,”
Meas. Sci. Technol.
,
17
(
11
), pp.
2897
2905
.
17.
Nagai
,
M.
,
Oishi
,
M.
,
Oshima
,
M.
,
Asai
,
H.
, and
Fujita
,
H.
,
2009
, “
Three-Dimensional Two-Component Velocity Measurement of the Flow Field Induced by the Vorticella Picta Microorganism Using a Confocal Microparticle Image Velocimetry Technique
,”
Biomicrofluidics
,
3
(
1
), p.
014105
.
18.
Scharnowski
,
S.
, and
Kähler
,
C.
,
2012
, “
On the Effect of Curved Streamlines on the Accuracy of PIV Vector Fields
,”
Exp. Fluids
,
54
(
1
), pp.
1
11
.
19.
Feng
,
Y.
,
Goree
,
J.
, and
Liu
,
B.
,
2011
, “
Errors in Particle Tracking Velocimetry With High-Speed Cameras
,”
Rev. Sci. Instrum.
,
82
(
5
), p.
053707
.
20.
Chenouard
,
N.
,
Smal
,
I.
,
de Chaumont
,
F.
,
Maska
,
M.
,
Sbalzarini
,
I. F.
,
Gong
,
Y.
,
Cardinale
,
J.
,
Carthel
,
C.
,
Coraluppi
,
S.
,
Winter
,
M.
,
Cohen
,
A. R.
,
Godinez
,
W. J.
,
Rohr
,
K.
,
Kalaidzidis
,
Y.
,
Liang
,
L.
,
Duncan
,
J.
,
Shen
,
H.
,
Xu
,
Y.
,
Magnusson
,
K. E.
,
Jalden
,
J.
,
Blau
,
H. M.
,
Paul-Gilloteaux
,
P.
,
Roudot
,
P.
,
Kervrann
,
C.
,
Waharte
,
F.
,
Tinevez
,
J. Y.
,
Shorte
,
S. L.
,
Willemse
,
J.
,
Celler
,
K.
,
van Wezel
,
G. P.
,
Dan
,
H. W.
,
Tsai
,
Y. S.
,
Ortiz de Solorzano
,
C.
,
Olivo-Marin
,
J. C.
, and
Meijering
,
E.
,
2014
, “
Objective Comparison of Particle Tracking Methods
,”
Nat. Methods
,
11
(
3
), pp.
281
289
.
21.
Keinan
,
E.
,
Ezra
,
E.
, and
Nahmias
,
Y.
,
2013
, “
Frame Rate Free Image Velocimetry for Microfluidic Devices
,”
Appl. Phys. Lett.
,
103
(
6
), p.
063507
.
22.
Fritsch
,
F.
, and
Carlson
,
R.
,
1980
, “
Monotone Piecewise Cubic Interpolation
,”
SIAM J. Numer. Anal.
,
17
(
2
), pp.
238
246
.
23.
Zimmer
,
H.
,
2005
,
Voronoi and Delaunay Techniques
(Lecture Notes in Computer Sciences, Vol.
8
), RWTH, Aachen, Germany.
24.
Barber
,
C. B.
,
Dobkin
,
D. P.
, and
Huhdanpaa
,
H.
,
1996
, “
The Quickhull Algorithm for Convex Hulls
,”
ACM Trans. Math. Software (TOMS)
,
22
(
4
), pp.
469
483
.
25.
Reynolds
,
O.
,
1895
, “
On the Dynamical Theory of Incompressible Viscous Fluids and the Determination of the Criterion
,”
Philos. Trans. R. Soc., A
,
186
, pp.
123
164
.
26.
Groisman
,
A.
, and
Steinberg
,
V. V.
,
2000
, “
Elastic Turbulence in a Polymer Solution Flow
,”
Nature
,
405
(
6782
), pp.
53
55
.
27.
Pakdel
,
P.
, and
McKinley
,
G. H.
,
1996
, “
Elastic Instability and Curved Streamlines
,”
Phys. Rev. Lett.
,
77
(
12
), pp.
2459
2462
.
28.
Chuang
,
H.-S.
,
Gui
,
L.
, and
Wereley
,
S.
,
2012
, “
Nano-Resolution Flow Measurement Based on Single Pixel Evaluation PIV
,”
Microfluid. Nanofluid.
,
13
(
1
), pp.
49
64
.
29.
Meinhart
,
C. D.
,
Wereley
,
S. T.
, and
Santiago
,
J. G.
,
1999
, “
PIV Measurements of a Microchannel Flow
,”
Exp. Fluids
,
27
(
5
), pp.
414
419
.
30.
Tropea
,
C.
,
Yarin
,
A. L.
, and
Foss
,
J. F.
,
2007
,
Springer Handbook of Experimental Fluid Mechanics
,
Springer Science & Business Media
, Springer-Verlag, Berlin/Heidelberg.
31.
Çengel
,
Y. A.
, and
Cimbala
,
J. M.
,
2006
,
Fluid Mechanics: Fundamentals and Applications
,
McGraw-Hill
,
New York
, p.
450
.
32.
Gülan
,
U.
,
Lüthi
,
B.
,
Holzner
,
M.
,
Liberzon
,
A.
,
Tsinober
,
A.
, and
Kinzelbach
,
W.
,
2014
, “
An In Vitro Investigation of the Influence of Stenosis Severity on the Flow in the Ascending Aorta
,”
Med. Eng. Phys.
,
36
(
9
), pp.
1147
1155
.
33.
Fachin
,
F.
,
Chen
,
G. D.
,
Toner
,
M.
, and
Wardle
,
B. L.
,
2011
, “
Integration of Bulk Nanoporous Elements in Microfluidic Devices With Application to Biomedical Diagnostics
,”
J. Microelectromech. Syst.
,
20
(
6
), pp.
1428
1438
.
34.
Koponen
,
A.
,
Kataja
,
M.
, and
Timonen
,
J.
,
1996
, “
Tortuous Flow in Porous Media
,”
Phys. Rev. E
,
54
(
1
), pp.
406
410
.
You do not currently have access to this content.