Abstract

Flow around two identical wall-mounted trapezoidal bluff bodies, arranged in tandem, is numerically investigated at a Reynolds number of 750,000. The investigation employs Reynolds-averaged Navier–Stokes (RANS) equations and the k–ω SST turbulence model. The effect due to the change of the angular orientation of the inclined faces (α) of this bluff body and the pitch distance (L/D) on hydrodynamic quantities and turbulence quantities is investigated. Furthermore, the drag coefficient and Strouhal number have also been evaluated to understand the vortex shedding and flow pattern-related phenomena. For d and intermediate types of bluff bodies, the streamwise mean velocity, cross-stream mean velocity, turbulence kinetic energy, and recirculation length decrease with the increase of α or L/D. Significant changes are also observed in the case of Strouhal number. Reduction in drag coefficient and recirculation length is observed with increased L/D at a constant α for d-type bluff bodies. The change of α and L/D also creates the formation of a periodic von Kármán vortex street at downstream of the second bluff body in the case of L/D = 7, making the flows more complex and unstable. The maximum size of the recirculation bubble occurs in the case of L/D = 10 at α = 30 deg. The investigation provides valuable insight into the complex dynamics of tandem configurations of wall-mounted bluff bodies.

References

1.
Abdullah
,
M. M.
,
Walsh
,
K. K.
,
Grady
,
S.
, and
Wesson
,
G. D.
,
2005
, “
Modeling Flow Around Bluff Bodies
,”
J. Comput. Civ. Eng.
,
19
(
1
), pp.
104
107
.10.1061/(ASCE)0887-3801(2005)19:1(104)
2.
Kulkarni
,
P. R.
,
Singh
,
S. N.
, and
Seshadri
,
V.
,
2005
, “
Behaviour of Ship Funnel Exhaust in the Wake of a Bluff Body
,”
Royal Institution of Naval Architects International Conference—Marnie CFD 2005 Fourth International Conference on Marine Hydrodynamics
, Southampton, UK, Mar. 30–31, pp.
115
124
.https://www.researchgate.net/publication/272654240_Behaviour_of_ship_funnel_exhaust_in_the_wake_of_a_bluff_body
3.
Goh
,
S. C.
,
Boopathy
,
S. R.
,
Krishnaswami
,
C.
, and
Schlüter
,
J. U.
,
2016
, “
Tow Testing of Savonius Wind Turbine Above a Bluff Body Complemented by CFD Simulation
,”
Renewable Energy
,
87
(
1
), pp.
332
345
.10.1016/j.renene.2015.10.015
4.
Wang
,
J.
,
Zhao
,
G.
,
Zhang
,
M.
, and
Zhang
,
Z.
,
2018
, “
Efficient Study of a Coarse Structure Number on the Bluff Body During the Harvesting of Wind Energy
,”
Energy Sources, Part A: Recover., Util., Environ. Eff.
,
40
(
15
), pp.
1788
1797
.10.1080/15567036.2018.1486916
5.
Bashir
,
M. B.
,
Benson
,
S. D.
,
Evans
,
M.
, and
Murphy
,
A. J.
,
2017
, “
Simulations of Dynamic Interaction Between a Bluff Body and Installation Vessel During Launch and Recovery in Rough Seas
,”
ASME
Paper No. OMAE2017-61319.10.1115/OMAE2017-61319
6.
Panda
,
J. P.
,
2023
, “
Machine Learning for Naval Architecture, Ocean and Marine Engineering
,”
J. Mar. Sci. Technol.
,
28
(
1
), pp.
1
26
.10.1007/s00773-022-00914-5
7.
Kong
,
H.
,
Roussinova
,
V.
, and
Stoilov
,
V.
,
2019
, “
Renewable Energy Harvesting From Water Flow
,”
Int. J. Environ. Stud.
,
76
(
1
), pp.
84
101
.10.1080/00207233.2018.1494928
8.
Latif
,
U.
,
Uddin
,
E.
,
Abdullah
,
C.
,
Ali
,
Z.
,
Sajid
,
M.
,
Akhtar
,
K.
, and
Shah
,
S. R.
,
2020
, “
Experimental Investigation of Energy Harvesting Behind a Bluff Body
,”
J. Renewable Sustainable Energy
,
12
(
3
), p. 033301.10.1063/1.5144347
9.
Ohya
,
Y.
,
2014
, “
Bluff Body Flow and Vortex—Its Application to Wind Turbines
,”
Fluid Dyn. Res.
,
46
(
6
), p.
061423
.10.1088/0169-5983/46/6/061423
10.
Andersen
,
M.
,
Yin
,
G.
, and
Ong
,
M. C.
,
2021
, “
Numerical Simulations of Flow Around Wall-Mounted Square and Trapezoidal Structures at High Reynolds Numbers
,”
ASME J. Offshore Mech. Arct. Eng.
,
143
(
1
), p.
011902
.10.1115/1.4047541
11.
Tachie
,
M. F.
, and
Adane
,
K. K.
,
2007
, “
PIV Study of Shallow Open Channel Flow Over d- and k-Type Transverse Ribs
,”
ASME J. Fluids Eng.
,
129
(
8
), pp.
1058
1072
.10.1115/1.2746910
12.
Spedding
,
G. R.
,
1997
, “
The Evolution of Initially Turbulent Bluff-Body Wakes at High Internal Froude Number
,”
J. Fluid Mech.
,
337
, pp.
283
301
.10.1017/S0022112096004557
13.
Krajnović
,
S.
, and
Davidson
,
L.
,
2002
, “
Large-Eddy Simulation of the Flow Around a Bluff Body
,”
AIAA J.
,
40
(
5
), pp.
927
936
.10.2514/2.1729
14.
Asadollahi
,
N.
,
Nistor
,
I.
, and
Mohammadian
,
A.
,
2019
, “
Numerical Investigation of Tsunami Bore Effects on Structures, Part I: Drag Coefficients
,”
Nat. Hazards
,
96
(
1
), pp.
285
309
.10.1007/s11069-018-3542-2
15.
Ramesh
,
J. P.
,
Sivakumar
,
K.
, and
Mugendiran
,
V.
,
2020
, “
Investigation of Wake Aerodynamics in Bluff Body for UAV Application
,”
J. Mech. Eng.
,
10
(
2
), pp.
27
34
.10.26634/jme.10.2.16769
16.
Li
,
X.
,
Xiao
,
Q.
,
Wang
,
E.
,
Peyrard
,
C.
, and
Gonçalves
,
R. T.
,
2023
, “
The Dynamic Response of Floating Offshore Wind Turbine Platform in Wave-Current Condition
,”
Phys. Fluids
,
35
(
8
), p. 087113.10.1063/5.0158917
17.
Mu
,
A.
,
Huang
,
Z.
,
Liu
,
A.
,
Yang
,
B.
,
Wang
,
J.
,
Qian
,
Y.
, and
Wang
,
H.
,
2022
, “
Bluff Body Vortex-Induced Vibration Control of Floating Wind Turbines Based on a Novel Intelligent Robust Control Algorithm
,”
Phys. Fluids
,
34
(
11
), p. 114103.10.1063/5.0121829
18.
Arie
,
M.
,
Kiya
,
M.
,
Tamura
,
H.
, and
Kanayama
,
Y.
,
1975
, “
Flow Over Rectangular Cylinders Immersed in a Turbulent Boundary Layer (Part-1: Correlation Between Pressure Drag and Boundary-Layer Characteristics)
,”
Bull. JSME
,
18
(
125
), pp.
1260
1268
.10.1299/jsme1958.18.1260
19.
Arie
,
M.
,
1977
, “
Flow Over Rectangular Cylinders Immersed in a Turbulent Boundary Layer. Part 2
,”
Chem. Pharm. Bull.
,
12
, p.
2091
.10.1299/jsme1958.18.1269
20.
Antoniou
,
J.
, and
Bergeles
,
G.
,
1988
, “
Development of the Reattached Flow Behind Surface-Mounted Two-Dimensional Prisms
,”
ASME J. Fluids Eng.
,
110
(
2
), pp.
127
133
.10.1115/1.3243524
21.
Martinuzzi
,
R.
, and Tropea, C.,
1993
, “
The Flow Around Surface-Mounted, Prismatic Obstacles Placed in a Fully Developed Channel Flow
,”
ASME J. Fluids Eng.
,
115
(
1
), pp.
85
92
.
22.
Acharya
,
S.
,
Dutta
,
S.
,
Myrum
,
T. A.
, and
Baker
,
R. S.
,
1994
, “
Turbulent Flow Past a Surface-Mounted Two-Dimensional Rib
,”
ASME J. Fluids Eng.
,
116
(
2
), pp.
238
246
.10.1115/1.2910261
23.
Liu
,
Y. Z.
,
Ke
,
F.
, and
Sung
,
H. J.
,
2008
, “
Unsteady Separated and Reattaching Turbulent Flow Over a Two-Dimensional Square Rib
,”
J. Fluids Struct.
,
24
(
3
), pp.
366
381
.10.1016/j.jfluidstructs.2007.08.009
24.
Gamel
,
H.
,
Salizzoni
,
P.
,
Soulhac
,
L.
,
Méjean
,
P.
,
Marro
,
M.
,
Grosjean
,
N.
, and
Carissimo
,
B.
,
2014
, “
Turbulent Kinetic Energy Budget and Dissipation in the Wake of 2D Obstacle: Analysis of the k-ε Closure Model
,”
ASME
Paper No. FEDSM2014-21489.10.1115/FEDSM2014-21489
25.
Afgan
,
I.
,
Kahil
,
Y.
,
Benhamadouche
,
S.
, and
Sagaut
,
P.
,
2011
, “
Large Eddy Simulation of the Flow Around Single and Two Side-by-Side Cylinders at Subcritical Reynolds Numbers
,”
Phys. Fluids
,
23
(
7
), p. 075101.10.1063/1.3596267
26.
Burattini
,
P.
, and
Agrawal
,
A.
,
2013
, “
Wake Interaction Between Two Side-by-Side Square Cylinders in Channel Flow
,”
Comput. Fluids
,
77
, pp.
134
142
.10.1016/j.compfluid.2013.02.014
27.
Han
,
L.
,
Riviere
,
N.
,
Chatelain
,
M.
, and
Mignot
,
E.
,
2020
, “
Recirculation Zone Downstream Lateral Expansions of Open Channel Flow
,”
Phys. Fluids
,
32
(
11
), p. 115119.10.1063/5.0018343
28.
Barman
,
K.
,
Debnath
,
K.
, and
Mazumder
,
B. S.
,
2019
, “
Turbulence Over Chains of Hemispherical Ribs Under Waves in a Current
,”
Water Resour. Res.
,
55
(
1
), pp.
55
75
.10.1029/2017WR020379
29.
Jasim
,
R. A.
,
Hussen
,
W. Q.
,
Abdullah
,
M. F.
, and
Zulkifli
,
R.
,
2023
, “
Numerical Simulation of Characterization of Hydraulic Jump Over an Obstacle in an Open Channel Flow
,”
J. Adv. Res. Fluid Mech. Therm. Sci.
,
106
(
1
), pp.
1
15
.10.37934/arfmts.106.1.115
30.
Menter
,
F. R.
,
1993
, “
Zonal Two Equation k-ω Turbulence Models for Aerodynamic Flows
,”
AIAA
Paper No. 93-2906.10.2514/6.93-2906
31.
Jones
,
W. P.
, and
Launder
,
B. E.
,
1973
, “
The Calculation of Low-Reynolds-Number Phenomena With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
,
16
(
6
), pp.
1119
1130
.10.1016/0017-9310(73)90125-7
32.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
,
3
rd ed.,
DCW Industries
,
La Canada, CA
.
33.
Xinyu
,
L.
,
Changzhi
,
C.
, and
Zengnan
,
D.
,
1995
, “
Écoulements Turbulents À Surface Libre En Canaux Lisses Avec Différentes Pentes
,”
J. Hydraul. Res.
,
33
(
3
), pp.
333
347
.10.1080/00221689509498575
34.
Fatahi
,
M.
,
Akdogan
,
G.
,
Dorfling
,
C.
, and
Van Wyk
,
P.
,
2021
, “
Numerical Study of Microplastic Dispersal in Simulated Coastal Waters Using CFD Approach
,”
Water (Switzerland)
,
13
(
23
), p.
3432
.10.3390/w13233432
35.
Barton
,
I. E.
,
1998
, “
Comparison of SIMPLE- and PISO-Type Algorithms for Transient Flows
,”
Int. J. Numer. Methods Fluids
,
26
(
4
), pp.
459
483
.10.1002/(SICI)1097-0363(19980228)26:4<459::AID-FLD645>3.0.CO;2-U
36.
Jang
,
D. S.
,
Jetli
,
R.
, and
Acharya
,
S.
,
1986
, “
Comparison of the PISO, SIMPLER, and SIMPLEC Algorithms for the Treatment of the Pressure-Velocity Coupling in Steady Flow Problems
,”
Numer. Heat Transfer
,
10
(
3
), pp.
209
228
.10.1080/10407788608913517
37.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
Dimensionless Numbers for the Assessment of Mesh and Timestep Requirements in CFD Simulations of Darrieus Wind Turbines
,”
Energy
,
97
, pp.
246
261
.10.1016/j.energy.2015.12.111
38.
Adanta
,
D.
,
Ibrahim
,
M. M.
,
Sari
,
D. P.
,
Syofii
,
I.
, and
Saputra
,
M. A. A.
,
2022
, “
Application of the Grid Convergency Index Method and Courant Number Analysis for Propeller Turbine Simulation
,”
J. Adv. Res. Fluid Mech. Therm. Sci.
,
96
(
2
), pp.
33
41
.10.37934/arfmts.96.2.3341
39.
Chamoli
,
S.
,
Joshi
,
A.
,
Rana
,
S.
,
Bhattacharaya
,
S.
,
Gupta
,
A.
,
Ghansela
,
S.
,
Thianpong
,
C.
, and
Eiamsa-Ard
,
S.
,
2023
, “
Numerical Methodology to Reduce the Drag and Control Flow Around a Cam-Shaped Cylinder Integrated With Backward Splitter Plate
,”
Computation
,
11
(
10
), p.
196
.10.3390/computation11100196
40.
Borah
,
R.
,
Jain
,
S.
,
Joshi
,
D. V.
, and
Saha
,
U. K.
,
2021
, “
Flow Characterization of Bluff Bodies: A Two-Dimensional Transformation From Square to Triangular Cylinder
,”
ASME J. Fluids Eng.
,
143
(
11
), p.
111302
.10.1115/1.4051310
41.
Umeyama Motohiko
,
G. F.
,
1992
, “
Velocity Distribution in Uniform Sediment-Laden Flow
,”
ASCE
,
118
, pp.
989
1001
.10.1061/(ASCE)0733-9429(1992)118:2(229)
43.
Garcia-Ribeiro
,
D.
,
Malatesta
,
V.
,
Moura
,
R. C.
, and
Cerón-Muñoz
,
H. D.
,
2023
, “
Assessment of RANS-Type Turbulence Models for CFD Simulations of Horizontal Axis Wind Turbines at Moderate Reynolds Numbers
,”
J. Braz. Soc. Mech. Sci. Eng.
,
45
(
11
), pp.
1
21
.10.1007/s40430-023-04488-0
44.
Bai
,
C. J.
, and
Wang
,
W. C.
,
2016
, “
Review of Computational and Experimental Approaches to Analysis of Aerodynamic Performance in Horizontal-Axis Wind Turbines (HAWTs)
,”
Renewable Sustainable Energy Rev.
,
63
(
2016
), pp.
506
519
.10.1016/j.rser.2016.05.078
45.
Zhu
,
B.
,
Sun
,
X.
,
Wang
,
Y.
, and
Huang
,
D.
,
2017
, “
Performance Characteristics of a Horizontal Axis Turbine With Fusion Winglet
,”
Energy
,
120
, pp.
431
440
.10.1016/j.energy.2016.11.094
46.
Farhan
,
A.
,
Hassanpour
,
A.
,
Burns
,
A.
, and
Motlagh
,
Y. G.
,
2019
, “
Numerical Study of Effect of Winglet Planform and Airfoil on a Horizontal Axis Wind Turbine Performance
,”
Renewable Energy
,
131
, pp.
1255
1273
.10.1016/j.renene.2018.08.017
47.
Constantinescu
,
G. S.
,
Krajewski
,
W. F.
,
Ozdemir
,
C. E.
, and
Tokyay
,
T.
,
2007
, “
Simulation of Airflow Around Rain Gauges: Comparison of LES With RANS Models
,”
Adv. Water Resour.
,
30
(
1
), pp.
43
58
.10.1016/j.advwatres.2006.02.011
48.
Iqbal Qureshi
,
M. Z.
, and
Chan
,
A. L. S.
,
2020
, “
Influence of Eddy Viscosity Parameterisation on the Characteristics of Turbulence and Wind Flow: Assessment of Steady RANS Turbulence Model
,”
J. Build. Eng.
,
27
, p.
100934
.10.1016/j.jobe.2019.100934
49.
Glegg
,
S.
,
Morin
,
B.
,
Atassi
,
O.
, and
Reba
,
R.
,
2008
, “
Using RANS Calculations of Turbulent Kinetic Energy to Provide Predictions of Trailing Edge Noise
,”
AIAA
Paper No. 2008-2993.10.2514/6.2008-2993
50.
Umlauf
,
L.
, and
Burchard
,
H.
,
2003
, “
A Generic Length-Scale Equation for Geophysical Turbulence Models
,”
J. Mar. Res.
,
61
(
2
), pp.
235
265
.10.1357/002224003322005087
51.
Gu
,
H.
,
Liu
,
M.
,
Li
,
X.
,
Huang
,
H.
,
Wu
,
Y.
, and
Sun
,
F.
,
2018
, “
The Effect of a Low-Frequency Structure on Passive Scalar Transport in the Flow Over a Surface-Mounted Rib
,”
Flow, Turbul. Combust.
,
101
(
3
), pp.
719
740
.10.1007/s10494-018-9929-z
52.
Hwang
,
R. R.
,
Chow
,
Y. C.
, and
Peng
,
Y. F.
,
1999
, “
Numerical Study of Turbulent Flow Over Two-Dimensional Surface-Mounted Ribs in a Channel
,”
Int. J. Numer. Methods Fluids
,
31
(
4
), pp.
767
785
.10.1002/(SICI)1097-0363(19991030)31:4<767::AID-FLD902>3.0.CO;2-A
53.
Garciá
,
C.
,
2020
, “
Kármán Vortex Street in Incompressible Fluid Models
,”
Nonlinearity
,
33
, pp.
1625
1676
.10.1088/1361-6544/ab6309
54.
Wu
,
C. J.
,
Wang
,
L.
, and
Wu
,
J. Z.
,
2007
, “
Suppression of the Von Kármán Vortex Street Behind a Circular Cylinder by a Travelling Wave Generated by a Flexible Surface
,”
J. Fluid Mech.
,
574
, pp.
365
391
.10.1017/S0022112006004150
55.
Schatzman
,
J. C.
,
1981
, “
A Model for Von Karman Vortex Street
,”
Ph.D. thesis
, California Institute of Technology, Pasadena, CA.https://thesis.library.caltech.edu/1751/4/schatzman_jc_1981.pdf
56.
Buresti
,
G.
,
1998
, “
Vortex Shedding From Bluff Bodies
,” Wind Effects on Buildings and Structures, CRC Press, Boca Raton, FL, pp.
61
95
.
57.
Knisely
,
C. W.
,
1990
, “
Strouhal Numbers of Rectangular Cylinders at Incidence: A Review and New Data
,”
J. Fluids Struct.
, 4(4) pp.
371
393
.10.1016/0889-9746(90)90137-T
You do not currently have access to this content.