Abstract

Systematic measuring of hydraulic machine's performance data at hydraulic model test rigs involves comprehensive expert knowledge of the test rig engineer and is time-consuming, as the multidimensional operation space must be explored manually. Expertise is needed to account for specific performance limits of test-rig equipment, model turbines, storage pumps, or pump turbines as well as some hysteresis of the setup due to flow separation and dealing with operation point-dependent gains between controlled parameters and measured quantities. To free valuable manpower from the burden of shift work, the measurement procedure is subject to automation. However, testing new automation concepts involves safety-critical or expensive tests and consumes valuable time at tests too. To develop and validate new automation concepts offline, we present a hybrid data-driven modeling approach to create a digital twin of the combined setup of a hydraulic turbine on a hydraulic test rig. Special attention paid to the modeling approach is consistent with existing mathematical relations governed by either physical models or norms. The presented approach allows the separation of test rig and hydraulic model machine under test and this enables offline validation of automation concepts on different combinations of test rigs and hydraulic model machines. The modeling approach is demonstrated by performing cross-validation using recorded measurement data.

References

1.
Huang
,
W.
,
Yang
,
K.
,
Guo
,
X.
,
Ma
,
J.
,
Wang
,
J.
, and
Li
,
J.
,
2018
, “
Prediction Method for the Complete Characteristic Curves of a Francis Pump-Turbine
,”
Water
,
10
(
2
), p.
205
.10.3390/w10020205
2.
Zhao
,
X.
,
Zhang
,
D.
,
Zhang
,
R.
, and
Xu
,
B.
,
2022
, “
A Comparative Study of Gaussian Process Regression With Other Three Machine Learning Approaches in the Performance Prediction of Centrifugal Pump
,”
Proc. Inst. Mech. Eng., Part C
,
236
(
8
), pp.
3938
3949
.10.1177/09544062211050542
3.
International Standard IEC 60193:2019,
2019
, “
Hydraulic Turbines, Storage Pumps and Pump-Turbines—Model Acceptance Tests
,” ISBN 9782832266595.https://www.intertekinform.com/preview/98687781138.pdf?sku=872218_saig_nsai_nsai_2073849&srsltid=AfmBOorwrtR4yBB6RyUzZqlFag-3MjJ19AKjDR-m9poOA82Nm7sebf2m
4.
Jarry-Bolduc
,
D.
, and
Cote
,
E.
,
2014
, “
Hydro Energy Generation and Instrumentation & Measurement: Hydropower Plant Efficiency Testing
,”
IEEE Instrum. Meas. Mag.
,
17
(
2
), pp.
10
14
.10.1109/MIM.2014.6810039
5.
Abgottspon
,
A.
, and
Staubli
,
T.
,
2008
, “
Index Tests of a Francis Unit Using the Sliding Gate Method
,”
International Conference on Hydraulic Efficiency Measurements
, Milano, Italy, Sept. 3–6, pp. 1–9.https://www.academia.edu/55699454/Index_Tests_of_a_Francis_Unit_Using_the_Sliding_Gate_Method?uc?sb?sw=98679705
6.
Sick
,
M.
,
Michler
,
W.
,
Weiss
,
T.
, and
Keck
,
H.
,
2009
, “
Recent Developments in the Dynamic Analysis of Water Turbines
,”
P I MECH ENG A-J POW.
, 223(4), pp. 415–427.10.1243/09576509JPE578
7.
Menarin
,
H. A.
,
Costa
,
H. A.
,
Fredo
,
G. L. M.
,
Gosmann
,
R. P.
,
Finardi
,
E. C.
, and
Weiss
,
L. A.
,
2019
, “
Dynamic Modeling of Kaplan Turbines Including Flow Rate and Efficiency Static Characteristics
,”
IEEE Trans. Power Syst.
,
34
(
4
), pp.
3026
3034
.10.1109/TPWRS.2019.2899815
8.
Qian
,
D.
,
Yi
,
J.
, and
Liu
,
X.
,
2011
, “
Design of Reduced Order Sliding Mode Governor for Hydroturbines
,”
Proceedings of the 2011 American Control Conference
, San Francisco, CA, June 29–July 1, pp.
5073
5078
.10.1109/ACC.2011.5991268
9.
Yuan
,
X.
,
Chen
,
Z.
,
Yuan
,
Y.
, and
Huang
,
Y.
,
2015
, “
Design of Fuzzy Sliding Mode Controller for Hydraulic Turbine Regulating System Via Input State Feedback Linearization Method
,”
Energy
,
93
, pp.
173
187
.10.1016/j.energy.2015.09.025
10.
Huang
,
S.
,
Zhou
,
B.
,
Bu
,
S.
,
Li
,
C.
,
Zhang
,
C.
,
Wang
,
H.
, and
Wang
,
T.
,
2019
, “
Robust Fixed-Time Sliding Mode Control for Fractional-Order Nonlinear Hydro-Turbine Governing System
,”
Renewable Energy
,
139
, pp.
447
458
.10.1016/j.renene.2019.02.095
11.
Hasmatuchi
,
V.
,
Bosioch
,
A.
,
Luisier
,
S.
, and
Münch-Alligné
,
C.
,
2016
, “
Dynamic Efficiency Measurements on Hydraulic Turbomachinery Model Testing: Examples of Implementation and Validation
,” Proceedings of 11th International Conference on Hydraulic Efficiency Measurement (
IGHEM 2016
), Linz, Austria, Aug. 24–26, pp.1–10.https://arodes.hes-so.ch/record/10712?ln=en#files
12.
Hasmatuchi
,
V.
,
Bosioc
,
A. I.
,
Luisier
,
S.
, and
Münch-Alligné
,
C.
,
2018
, “
A Dynamic Approach for Faster Performance Measurements on Hydraulic Turbomachinery Model Testing
,”
Appl. Sci.
,
8
(
9
), p.
1426
.10.3390/app8091426
13.
Rathore
,
M. M.
,
Shah
,
S. A.
,
Shukla
,
D.
,
Bentafat
,
E.
, and
Bakiras
,
S.
,
2021
, “
The Role of AI, Machine Learning, and Big Data in Digital Twinning: A Systematic Literature Review, Challenges, and Opportunities
,”
IEEE Access
,
9
, pp.
32030
32052
.10.1109/ACCESS.2021.3060863
14.
Reiterer
,
S. H.
,
Stolz
,
M. C.
,
Dikic
,
B.
,
Reiterer
,
D. R.
,
Rossmann
,
B.
,
Schaffernak
,
G.
, and
Guggenberger
,
M.
,
2024
, “
Digitalization of Test-Rigs for Development of Hydraulic Machines: Predictive Model For Detection of Characteristics of Turbine and Pump-Turbine Models for Hydraulic Test-Rig Automation
,”
ASME
Paper No. FEDSM2024-130641.10.1115/FEDSM2024-130641
15.
Andritz
,
2024
, “
Internal Report MetrisX
,”.
16.
Forrester
,
A.
,
Sobester
,
A.
, and
Keane
,
A.
,
2008
,
Engineering Design Via Surrogate Modelling: A Practical Guide
,
Wiley
, UK.
17.
Williams
,
C. K.
, and
Rasmussen
,
C. E.
,
2006
,
Gaussian Processes for Machine Learning
, Vol.
2
,
MIT Press
,
Cambridge, MA
.
18.
Berkenkamp
,
F.
, and
Schoellig
,
A. P.
,
2015
, “
Safe and Robust Learning Control With Gaussian Processes
,” European Control Conference (
ECC
), Linz, Austria, July 15--17, pp.
2496
2501
.10.1109/ECC.2015.7330913
19.
Peruzzi
,
M.
,
Banerjee
,
S.
, and
Finley
,
A. O.
,
2022
, “
Highly Scalable Bayesian Geostatistical Modeling Via Meshed Gaussian Processes on Partitioned Domains
,”
J. Am. Stat. Assoc.
,
117
(
538
), pp.
969
982
.10.1080/01621459.2020.1833889
20.
Titsias
,
M.
,
2009
, “
Variational Learning of Inducing Variables in Sparse Gaussian Processes
,”
Proceedings of the 12th International Conference on Artificial Intelligence and Statistics (AISTATS)
,
Clearwater Beach
, FL, Apr. 16–18, pp.
567
574
.https://proceedings.mlr.press/v5/titsias09a/titsias09a.pdf
21.
Ljung
,
L.
,
1986
,
System Identification: Theory for the User
,
Prentice Hall, Inc
., Hoboken, NJ.
22.
The MathWorks Inc.
,
2016
, “
Matlab version: 9.1.0.441655 (r2016b)
,”
The MathWorks Inc.
,
Natick, MA
, accessed Mar. 28, 2025, https://www.mathworks.com
You do not currently have access to this content.