Thermal preconditioning is a process in which coal/water mixtures are vaporized to produce coal/steam suspensions, and then superheated to allow the coal to devolatilize producing suspensions of char particles in hydrocarbon gases and steam. This final product of the process can be injected without atomization, and burned directly in a gas turbine combustor. This paper reports on the results of an experimental program in which thermally preconditioned coal/water mixture was successfully burned with a stable flame in a gas turbine combustor test rig. Tests were performed at a mixture flowrate of 300 lb/hr and combustor pressure of 8 atm. The coal/water mixture was thermally preconditioned and injected into the combustor over a temperature range from 350°F to 600°F, and combustion air was supplied at between 600°F to 725°F. Test durations varied between 10 and 20 min. Major results of the combustion testing were that: A stable flame was maintained over a wide equivalence ratio range, between φ = 2.2 (rich) and 0.2 (lean); and combustion efficiency of over 99 percent was achieved when the mixture was preconditioned to 600°F and the combustion air preheated to 725°F. Measurements of ash particulates, captured in the exhaust sampling probe located 20 in. from the injector face, show typical sizes collected to be about 1 μm, with agglomerates of these particulates to be not more than 8 μm. The original mean coal particle size for these tests, prior to preconditioning, was 25 μm. Results of additional tests showed that one third of the sulfur contained in the solids of a coal/water mixture with 3 percent sulfur was evolved in gaseous form (under mild thermolized conditions) mainly as H2S with the remainder as light mercaptans.

This content is only available via PDF.
You do not currently have access to this content.