The change of performance parameters over time due to engine deterioration and production scatter plays an important role to ensure safe and economical engine operation. A tool has been developed which is able to model production scatter and engine deterioration on the basis of elementary changes of numerous construction features. In order to consider the characteristics of an engine fleet as well as random environmental influences, a probabilistic approach using Monte Carlo simulation (MCS) was chosen. To quantify the impact of feature deviations on performance relevant metrics, nonlinear sensitivity functions are used to obtain scalars and offsets on turbomachinery maps, which reflect module behavior during operation. Probability density functions (PDFs) of user-defined performance parameters of an engine fleet are then calculated by performing a MCS in a performance synthesis program. For the validation of the developed methodology pass-off test data, endurance engine test data, as well as data from engine maintenance, incoming tests have been used. For this purpose, measured engine fleet performance data have been corrected by statistically eliminating the influence of measuring errors. The validation process showed the model’s ability to predict more than 90% of the measured performance variance. Furthermore, predicted performance trends correspond well to performance data from engines in operation. Two model enhancements are presented, the first of which is intended for maintenance cost prediction. It is able to generate PDFs of failure times for different features. The second enhancement correlates feature change and operating conditions and thus connects airline operation and maintenance costs. Subsequently, it is shown that the model developed is a powerful tool to assist in aircraft engine design and production processes, thanks to its ability to identify and quantitatively assess main drivers for performance variance and trends.

1.
Spieler
,
S.
,
Staudacher
,
S.
,
Fiola
,
R.
, and
Sahm
,
P.
, 2006, “
Merkmalsbasierte Modellierung von Produktionsschwankungen bei Flugzeugtriebwerken
,”
Proceedings of DGLR
,
Braunschweig, Germany
.
2.
Wassell
,
A. B.
, 1968, “
Reynolds Number Effects in Axial Compressors
,”
ASME J. Eng. Power
0022-0825, to be published.
3.
Schlichting
,
H.
, and
Gersten
,
K.
, 2000,
Boundary Layer Theory
, 8th ed.,
Springer
,
Berlin
.
4.
Craney
,
T. A.
, 2003, “
Probabilistic Engineering Design
,”
Reliability Review, The R&M Engineering Journal
,
23
(
2
), pp.
1
6
.
5.
Norton
,
I.
, 2002, “
BR700-710 C4-11 Basic Design Data for GV-SP
,” Rolls-Royce Deutschland Technical Report No. E-TR476/02 ISS03.
6.
Fiola
,
R.
, 1993, “
Berechnung des Instationären Betriebsverhaltens von Gasturbinen Unter Besonderer Berücksichtigung von Sekundäreffekten
,” Ph.D. thesis, Technical University Munich, Germany.
7.
Chrysler Corporation, Ford Motor Company, General Motors Corporation, 2005,
Statistical Process Control (SPC) Reference Manual
, 2nd ed.,
Detroit
.
8.
Franke
,
B.
,
Spieler
,
S.
,
Staudacher
,
S.
, and
Gebser
,
D.
, 2005, “
Factory and Process Simulation in Aero-Engine Component Manufacturing
,” ASME Paper No. GT2005-68309, Reno, NV.
9.
Sembacuttiarachy
,
S.
, 2004, “
Anwendbarkeit von Prozessfähigkeitskennwerten bei Kleinen Serien
,” Diploma thesis, Stuttgart University, Germany.
10.
Bronstein
,
I. N.
,
Semendjajew
,
K. A.
,
Musiol
,
G.
, and
Mühlig
,
H.
, 2000,
Taschenbuch der Mathematik
, 5th ed.,
Harri Deutsch
,
Frankfurt, Germany
.
11.
Kurz
,
R.
, and
Brun
,
K.
, 2001, “
Degradation in Gas Turbine Systems
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
123
, pp.
70
77
.
12.
Tarabrin
,
A. P.
,
Bodrov
,
A. L.
,
Schurovsky
,
V. A.
, and
Stalder
,
J. P.
, 1996, “
An Analysis of Axial Compressor Fouling and a Cleaning Method of Their Blading
,” ASME Paper No. GT1996-363.
13.
Rossmann
,
A.
, 2000,
Die Sicherheit von Flugtriebwerken
, 1st ed.,
Turbo Consult
,
Karlsfeld, Germany
.
14.
Zaita
,
A. V.
,
Buley
,
G.
, and
Karlsons
,
G.
, 1998, “
Performance Deterioration Modeling in Aircraft Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
120
, pp.
344
349
.
15.
Eichler
,
Ch.
, 1990,
Instandhaltungstechnik
, 5th ed.,
Technik GmbH
,
Berlin, Germany
.
16.
Burkett
,
M. A.
, 2006, “
DM-Trade—A Rolls-Royce Tool to Model the Impact of Design Changes and Maintenance Strategies on Lifetime Reliability and Maintenance Cost
,” ASME Paper No. GT2006-90023, Barcelona, Spain.
17.
Spieler
,
S.
,
Staudacher
,
S.
,
Kappmeyer
,
G.
, and
Lou
,
W.
, 2006, “
Reparaturverfahren und ihre Bedeutung für die Bewertung von Blisks über den Lebenszyklus von Flugtriebwerken
,”
Proceedings of DGLR
,
Braunschweig, Germany
.
18.
Lauer
,
A.
,
Hendricks
,
J.
,
Ackermann
,
I.
,
Schell
,
B.
,
Hass
,
H.
, and
Metzger
,
S.
, 2005, “
Simulating Aerosol Microphysics with the ECHAM/MADE GCM Part I: Model Description and Comparison With Observations
,”
Atmos. Chem. Phys.
1680-7316,
5
, pp.
3251
3276
.
19.
Sage
,
W.
, and
Tilly
,
G. P.
, 1970, “
The Interaction of Particle and Material Behavior in Erosion Processes
,”
Wear
0043-1648,
16
, pp.
447
465
.
20.
Espenschade
,
P. W.
, and
Wood
,
C. D.
, 1965, “
Mechanisms of dust erosion
,”
SAE Trans.
0096-736X,
73
, pp.
515
523
.
You do not currently have access to this content.