The nonlinear response of a swirl-stabilized flame to equivalence ratio oscillations was experimentally investigated in an atmospheric-pressure, high-temperature, lean-premixed model gas turbine combustor. To generate high-amplitude equivalence ratio oscillations, fuel was modulated using a siren-type modulating device. The mixture ratio oscillations at the inlet of the combustion chamber were measured by the infrared absorption technique, and the flame’s response, i.e., the fluctuation in the flame’s rate of heat release, was estimated by CH chemiluminescence emission intensity. Phase-resolved CH chemiluminescence images were taken to characterize the dynamic response of the flame. Results show that the amplitude and frequency dependence of the flame’s response to equivalence ratio oscillations is qualitatively consistent with the flame’s response to inlet velocity oscillations. The underlying physics of the nonlinear response of the flame to equivalence ratio oscillations, however, is associated with the intrinsically nonlinear dependence of the heat of reaction and burning velocity on the equivalence ratio. It was found that combustion cannot be sustained under conditions of high-amplitude equivalence ratio oscillations. Lean blowoff occurs when the normalized amplitude of the equivalence ratio oscillation exceeds a threshold value. The threshold value is dependent on the mean equivalence ratio and modulation frequency.

1.
Lieuwen
,
T.
, and
Yang
,
V.
, 2005, “
Combustion Instabilities in Gas Turbine Engines
,”
Progress in Astronautics and Aeronautics
, Vol.
210
,
AIAA
,
Washington, DC
.
2.
Candel
,
S.
, 2002, “
Combustion Dynamics and Control: Progress and Challenges
,”
Proc. Combust. Inst.
1540-7489,
29
, pp.
1
28
.
3.
Ducruix
,
D.
,
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
, 2003, “
Combustion Dynamics and Instabilities: Elementary Coupling and Driving Mechanisms
,”
J. Propul. Power
0748-4658,
19
, pp.
722
734
.
4.
Fleifil
,
M.
,
Annaswamy
,
A. M.
,
Ghoneim
,
Z. A.
, and
Ghoniem
,
A. F.
, 1996, “
Response of a Laminar Premixed Flame to Flow Oscillations: A Kinematic Model and Thermoacoustic Instability Results
,”
Combust. Flame
0010-2180,
106
, pp.
487
510
.
5.
Venkataraman
,
K. K.
,
Preston
,
L. H.
,
Simons
,
D. W.
,
Lee
,
B. J.
,
Lee
,
J. G.
, and
Santavicca
,
D. A.
, 1999, “
Mechanism of Combustion Instability in a Lean Premixed Dump Combustor
,”
J. Propul. Power
0748-4658,
15
(
6
), pp.
909
918
.
6.
Yu
,
K.
,
Trouve
,
A.
, and
Daily
,
J.
, 1991, “
Low-Frequency Pressure Oscillations in a Model Ramjet Combustor
,”
J. Fluid Mech.
0022-1120,
232
, pp.
47
72
.
7.
Schadow
,
K. C.
, and
Gutmark
,
E.
, 1992, “
Combustion Instability Related to Vortex Shedding in Dump Combustors and Their Passive Control
,”
Prog. Energy Combust. Sci.
0360-1285,
18
, pp.
117
132
.
8.
Poinsot
,
T. J.
,
Trouve
,
A. C.
,
Veynante
,
D. P.
,
Candel
,
S. M.
, and
Esposito
,
E. J.
, 1987, “
Vortex-Driven Acoustically Coupled Combustion Instabilities
,”
J. Fluid Mech.
0022-1120,
177
, pp.
265
292
.
9.
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
, 2002, “
Dynamics of and Noise Radiated by a Perturbed Impinging Premixed Jet Flame
,”
Combust. Flame
0010-2180,
128
, pp.
88
110
.
10.
Lee
,
J. G.
,
Kim
,
K.
, and
Santavicca
,
D.
, 2000, “
Measurement of Equivalence Ratio Fluctuation and Its Effect on Heat Release During Unstable Combustion
,”
Proc. Combust. Inst.
1540-7489,
28
, pp.
415
421
.
11.
Lieuwen
,
T.
, and
Zinn
,
B.
, 1998, “
The Role of Equivalence Ratio Oscillations in Driving Combustion Instabilities in Low NOx Gas Turbines
,”
Proc. Combust. Inst.
1540-7489,
27
, pp.
1809
1816
.
12.
Cho
,
J.
, and
Lieuwen
,
T.
, 2005, “
Laminar Premixed Flame Response to Equivalence Ratio Oscillations
,”
Combust. Flame
0010-2180,
140
, pp.
116
129
.
13.
Sattelmayer
,
T.
, 2003, “
Influence of the Combustor Aerodynamics on Combustion Instabilities From Equivalence Ratio Fluctuations
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
, pp.
11
19
.
14.
Balachandran
,
R.
,
Ayoola
,
B. O.
,
Kaminski
,
C. F.
,
Dowling
,
A. P.
, and
Mastorakos
,
E.
, 2005, “
Experimental Investigation of the Nonlinear Response of Turbulent Premixed Flames to Imposed Inlet Velocity Oscillations
,”
Combust. Flame
0010-2180,
143
, pp.
37
55
.
15.
Bellows
,
B. D.
,
Neumeier
,
Y.
, and
Lieuwen
,
T.
, 2006, “
Forced Response of a Swirling, Premixed Flame to Flow Disturbances
,”
J. Propul. Power
0748-4658,
22
, pp.
1075
1084
.
16.
Kang
,
D. M.
,
Culick
,
F. E. C.
, and
Ratner
,
A.
, 2007, “
Combustion Dynamics of a Low-Swirl Combustor
,”
Combust. Flame
0010-2180,
151
, pp.
412
425
.
17.
Kim
,
K. T.
,
Lee
,
J. G.
,
Lee
,
H. J.
,
Quay
,
B.
, and
Santavicca
,
D.
, 2010, “
Characterization of Forced Flame Response of Swirl-Stabilized Turbulent Lean-Premixed Flames in a Gas Turbine Combustor
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
132
, pp.
041502
.
18.
Armitage
,
C. A.
,
Balachandran
,
R.
,
Mastorakos
,
E.
, and
Cant
,
R. S.
, 2006, “
Investigation of the Nonlinear Response of Turbulent Premixed Flames to Imposed Inlet Velocity Oscillations
,”
Combust. Flame
0010-2180,
146
, pp.
419
436
.
19.
Birbaud
,
A.
,
Ducruix
,
S.
,
Durox
,
D.
, and
Candel
,
S.
, 2008, “
The Nonlinear Response of Inverted “V” Flames to Equivalence Ratio Nonuniformities
,”
Combust. Flame
0010-2180,
154
, pp.
356
367
.
20.
Sengissen
,
A. X.
,
Van Kampen
,
J. F.
,
Huls
,
R. A.
,
Stoffels
,
G. G. M.
,
Kok
,
J. B. W.
, and
Poinsot
,
T. J.
, 2007, “
LES and Experimental Studies of Cold and Reacting Flow in a Swirled Partially Premixed Burner With and Without Fuel Modulation
,”
Combust. Flame
0010-2180,
150
, pp.
40
53
.
21.
Waser
,
M. P.
, and
Crocker
,
M. J.
, 1984, “
Introduction to the Two-Microphone Cross-Spectral Method of Determining Sound Intensity
,”
Noise Control Eng. J.
0736-2501,
22
, pp.
76
85
.
22.
Åbom
,
M.
, and
Bodén
,
H.
, 1988, “
Error Analysis of Two-Microphone Measurements in Ducts With Flow
,”
J. Acoust. Soc. Am.
0001-4966,
83
, pp.
2429
2438
.
23.
Lee
,
J. G.
, and
Santavicca
,
D. A.
, 2003, “
Experimental Diagnostics for the Study of Combustion Instabilities in Lean Premixed Combustors
,”
J. Propul. Power
0748-4658,
19
, pp.
735
750
.
24.
Kim
,
K. T.
,
Lee
,
H. J.
,
Lee
,
J. G.
,
Quay
,
B.
, and
Santavicca
,
D.
, 2009, “
Flame Transfer Function Measurement and Instability Frequency Prediction Using a Thermoacoustic Model
,” ASME Paper No. GT2009-60026.
25.
Sankaran
,
R.
, and
Im
,
H. G.
, 2002, “
Dynamic Flammability Limits of Methane/Air Premixed Flames With Mixture Composition Fluctuations
,”
Proc. Combust. Inst.
1540-7489,
29
, pp.
77
84
.
26.
Kim
,
D.
,
Lee
,
J. G.
,
Quay
,
B. D.
,
Santavicca
,
D. A.
,
Kim
,
K.
, and
Srinivasan
,
S.
, 2010, “
Effect of Flame Structure on the Flame Transfer Function in a Premixed Gas Turbine Combustor
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
132
, p.
021502
.
27.
Shreekrishna
,
S. H.
, and
Lieuwen
,
T.
, 2007, “
Premixed Flame Response to Equivalence Ratio Perturbations
,”
43rd AIAA/ASME/ASEE Joint Propulsion Conference
, AIAA Paper No. 2007-5656.
28.
Nair
,
S.
, and
Lieuwen
,
T.
, 2007, “
Near-Blowoff Dynamics of a Bluff-Body Stabilized Flame
,”
J. Propul. Power
0748-4658,
23
, pp.
421
427
.
29.
Kim
,
K. T.
,
Lee
,
J. G.
,
Quay
,
B.
, and
Santavicca
,
D.
, 2010, “
Reconstruction of the Heat Release Response of Partially Premixed Flames
,” ASME Paper No. GT2010-22245.
You do not currently have access to this content.