The establishment of a safety evaluation method is one of the key issues for the nuclear hydrogen production demonstration since fundamental differences in the safety philosophy between nuclear plants and chemical plants exist. In the present study, a practical safety evaluation method, which enables to design, construct, and operate hydrogen production plants under conventional chemical plant standards, is proposed. An event identification is conducted for the HTTR-IS system, a nuclear hydrogen production system by thermochemical water splitting iodine-sulfur process (IS process) utilizing the heat from the high temperature engineering test reactor (HTTR) in order to select abnormal events, which would change the scenario and quantitative results of the evaluation items from the existing HTTR safety evaluation. In addition, a safety analysis is performed for the identified events. The results of safety analysis for the identified five anticipated operational occurrences (AOOs) and three accidents (ACDs) show that evaluating items such as a primary cooling system pressure, temperatures of heat transfer tubes at pressure boundary, etc., do not exceed the acceptance criteria during the scenario. In addition, the increase of peak fuel temperature is small in the most severe case and therefore, the reactor core was not damaged and cooled sufficiently. These results will contribute to the safety review from the government and demonstration of the nuclear production of hydrogen.

1.
JAEC
, 2008, The Innovative Nuclear Technology Roadmap for Contributing to the Mitigation of Global Warming.
2.
Sakaba
,
N.
,
Kasahara
,
S.
,
Onuki
,
K.
, and
Kunitomi
,
K.
, 2007, “
Conceptual Design of Hydrogen Production System With Thermochemical Water-Splitting Iodine-Sulphur Process Utilizing Heat From the High-Temperature Gas-Cooled Reactor HTTR
,”
Int. J. Hydrogen Energy
0360-3199,
32
(
17
), pp.
4160
4169
.
3.
Kunitomi
,
K.
,
Yan
,
X.
,
Nishihara
,
T.
,
Sakaba
,
N.
, and
Mouri
,
T.
, 2007, “
JAEA’s VHTR for Hydrogen and Electricity Cogeneration: GTHTR300C
,”
Nuclear Engineering and Technology
1738-5733,
39
(
1
), pp.
9
20
.
4.
Sakaba
,
N.
,
Sato
,
H.
,
Ohashi
,
H.
,
Nishihara
,
T.
, and
Kunitomi
,
K.
, 2008, “
Development Scenario of the Iodine-Sulphur Hydrogen Production Process to be Coupled With VHTR System as a Conventional Chemical Plant
,”
J. Nucl. Sci. Technol.
0022-3131,
45
(
9
), pp.
962
969
.
5.
Saito
,
S.
,
Tanaka
,
T.
,
Sudo
,
Y.
,
Baba
,
O.
,
Shindo
,
M.
,
Shioawa
,
S.
,
Mogi
,
H.
,
Okubo
,
M.
,
Ito
,
N.
,
Shindo
,
R.
,
Kobayashi
,
N.
,
Kurihara
,
R.
,
Hayashi
,
K.
,
Hada
,
K.
,
Kurata
,
Y.
,
Yamashita
,
K.
,
Kawasaki
,
K.
,
Iyoku
,
T.
,
Kunitomi
,
K.
,
Maruyama
,
S.
,
Ishihara
,
M.
,
Sawa
,
K.
,
Fujimoto
,
N.
,
Murata
,
I.
,
Nakagawa
,
S.
,
Tachibana
,
Y.
,
Nishihara
,
T.
,
Oshita
,
S.
,
Shinozaki
,
M.
,
Takeda
,
T.
,
Sakaba
,
N.
,
Saikusa
,
A.
,
Tazawa
,
Y.
,
Fukaya
,
Y.
,
Nagahori
,
H.
,
Kikuchi
,
T.
,
Kawaji
,
S.
,
Isozaki
,
M.
,
Matsuzaki
,
S.
,
Sakama
,
I.
,
Hara
,
K.
,
Ueda
,
N.
, and
Kokusen
,
S.
, 1994, “
Design of High Temperature Engineering Test Reactor (HTTR)
,” JAERI 1332.
6.
Ohashi
,
K.
,
Nishihara
,
T.
, and
Kunitomi
,
K.
, 2007, “
Fundamental Philosophy on the Safety Design of the HTTR-IS Hydrogen Production System
,”
Transactions of the Atomic Energy Society of Japan
1347-2879,
6
(
1
), pp.
46
57
, in Japanese.
7.
Ohashi
,
H.
,
Inaba
,
Y.
,
Nishihara
,
T.
,
Takeda
,
T.
,
Hayashi
,
K.
,
Takada
,
S.
, and
Inagaki
,
Y.
, 2006, “
Development of Control Technology for HTTR Hydrogen Production System With Mock-Up Test Facility: System Controllability Test for Loss of Chemical Reaction
,”
Nucl. Eng. Des.
0029-5493,
236
(
13
), pp.
1396
1410
.
8.
Sato
,
H.
,
Ohashi
,
H.
,
Sakaba
,
N.
,
Nishihara
,
T.
, and
Kunitomi
,
K.
, 2008, “
Thermal Load Control Methods for the HTTR-IS Nuclear Hydrogen Production System
,”
Transactions of the Atomic Energy Society of Japan
1347-2879,
7
(
4
), pp.
328
337
, in Japanese.
9.
Ohashi
,
H.
, and
Sherman
,
S. R.
, 2008, “
Analytical Study on Tritium Migration in NGNP and Countermeasures to Reduce Tritium Contamination
,”
Transactions of the Atomic Energy Society of Japan
1347-2879,
7
(
4
), pp.
439
451
, in Japanese.
10.
Murakami
,
T.
,
Nishihara
,
T.
, and
Kunitomi
,
K.
, 2008, “
Safety Assessment of VHTR Hydrogen Production System Against the Fire, Explosion and Acute Toxicity
,”
Transactions of the Atomic Energy Society of Japan
1347-2879,
7
(
3
), pp.
231
241
, in Japanese.
11.
Ohashi
,
K.
,
Nishihara
,
T.
,
Tazawa
,
Y.
,
Tachibana
,
Y.
, and
Kunitomi
,
K.
, 2008, “
Basic Principles on the Safety Evaluation of the HTGR Hydrogen Production System
,” JAEA-Technology 2008-093, in Japanese.
12.
USNRC
, 1995, RELAP5/MOD3 Code Manuals, NUREG/CR-5535.
13.
Takamatsu
,
K.
,
Katanishi
,
S.
,
Nakagawa
,
S.
, and
Kunitomi
,
K.
, 2004, “
Development of Plant Dynamics Analytical Code Named Conan-GTHTR for the Gas Turbine High Temperature Gas-Cooled Reactor, (I)
,”
Journal of Atomic Energy Society of Japan
1347-2879,
3
(
1
), pp.
76
87
, in Japanese.
14.
Sato
,
H.
,
Kubo
,
S.
,
Sakaba
,
N.
,
Ohashi
,
H.
,
Tachibana
,
Y.
, and
Kunitomi
,
K.
, 2009, “
Development of an Evaluation Method for the HTTR-IS Nuclear Hydrogen Production System
,”
Ann. Nucl. Energy
0306-4549,
36
(
7
), pp.
956
965
.
15.
Sakaba
,
N.
,
Sato
,
H.
,
Hara
,
T.
,
Kato
,
R.
,
Ohashi
,
K.
,
Nishihara
,
T.
, and
Kunitomi
,
K.
, 2007, “
Conceptual Design of the HTTR-IS Hydrogen Production System
,” JAEA-Research 2007-058, in Japanese.
16.
ANS
, 1971, “
Proposed ANS Standard Decay Energy Release Rates Following Shutdown of Uranium-Fueled Thermal Reactors
,” ANS 5.1.
You do not currently have access to this content.