Oscillations in fully annular systems coupled by azimuthal modes are often observed in gas turbine combustors but not well documented. One objective of the present study is to characterize this type of oscillation in a laboratory scale system, allowing detailed pressure measurements and high speed visualization of the flame motion. The experiment is designed to allow detailed investigations of this process at a stable limit cycle and for an extended period of time. Experiments reported in the present article are carried out in the MICCA facility which was used in our previous work to analyze instabilities arising when the chamber backplane was equipped with multiple swirling injectors (Bourgouin et al., 2013, “Self-Sustained Instabilities in an Annular Combustor Coupled by Azimuthal Acoustic Modes,” ASME Paper No. GT2013-95010). In the present study, these units are replaced by a set of matrix injectors. The annular plenum feeds 16 such devices confined by two cylindrical quartz tubes open to the atmosphere. The multiple flames formed by the matrix injectors are laminar and have a well documented describing function. This constitutes an ideal configuration allowing systematic investigations of thermo-acoustic oscillations coupled by longitudinal or azimuthal modes while avoiding complexities inherent to swirling turbulent flames studied previously. Optical access to the chamber allows high speed imaging of light emission from the flames providing instantaneous flame patterns and indications on the heat release rate fluctuations. Eight waveguide microphones record the pressure signal at the combustor injection plane and in the plenum. Among the unstable modes observed in this setup, this analysis focuses on situations where the system features a spinning azimuthal mode. This mode is observed at a frequency which is close to that associated with the 1A mode of the plenum. A theoretical analysis is then carried out to interpret the angular shift between the nodal lines in the plenum and chamber, and the measured flame describing function (FDF) is used to quantify this shift and determine the linear growth rate.

References

1.
Krüger
,
U.
,
Hüren
,
J.
,
Hoffmann
,
S.
,
Krebs
,
W.
, and
Bohn
,
D.
,
2000
, “
Prediction and Measurement of Thermoacoustic Improvements in Gas Turbines With Annular Combustion Systems
,”
ASME J. Eng. Gas Turbines Power
,
123
(3), pp. 557–566.10.1115/1.1374437
2.
Krebs
,
W.
,
Flohr
,
P.
,
Prade
,
B.
, and
Hoffmann
,
S.
,
2002
, “
Thermoacoustic Stability Chart for High-Intensity Gas Turbine Combustion Systems
,”
Combust. Sci. Technol.
,
174
(7), pp.
99
128
.10.1080/00102200208984089
3.
Krüger
,
U.
,
Hüren
,
J.
,
Hoffmann
,
S.
,
Krebs
,
W.
,
Flohr
,
P.
, and
Bohn
,
D.
,
2001
, “
Prediction and Measurement of Termoacoustic Improvements in Gas Turbines With Annular Combustion Systems
,”
ASME J. Eng. Gas Turbines Power
,
123
(
3
), pp.
557
566
.10.1115/1.1374437
4.
Stow
,
S. R.
, and
Dowling
,
A. P.
,
2001
, “
Thermoacoustic Oscillations in an Annular Combustor
,”
ASME
Paper No. 2001-GT-0037. 10.1115/2001-GT-0037
5.
Evesque
,
S.
, and
Polifke
,
W.
,
2002
, “
Low-Order Acoustic Modelling for Annular Combustors: Validation and Inclusion of Modal Coupling
,”
ASME
Paper No. GT2002-30064. 10.1115/GT2002-30064
6.
Pankiewitz
,
C.
, and
Sattelmayer
,
T.
,
2003
, “
Time Domain Simulation of Combustion Instabilities in Annular Combustors
,”
ASME J. Eng. Gas Turbines Power
,
125
(
3
), pp.
677
685
.10.1115/1.1582496
7.
Evesque
,
S.
,
Polifke
,
W.
, and
Pankiewitz
,
C.
,
2003
, “
Spinning and Azimuthally Standing Acoustic Modes in Annular Combustors
,”
AIAA
Paper No. 2003-3182. 10.2514/6.2003-3182
8.
Schuermans
,
B.
,
Bellucci
,
V.
, and
Paschereit
,
C. O.
,
2003
, “
Thermoacoustic Modeling and Control of Multi Burner Combustion Systems
,”
ASME
Paper No. GT2003-38688. 10.1115/GT2003-38688
9.
Schuermans
,
B.
,
Paschereit
,
C. O.
, and
Monkewitz
,
P.
,
2006
, “
Non-Linear Combustion Instabilities in Annular Gas-Turbine Combustors
,”
AIAA
Paper No. 2006-0549.10.2514/6.2006-0549
10.
Morgans
,
A. S.
, and
Stow
,
S. R.
,
2007
, “
Model-Based Control of Combustion Instabilities in Annular Combustors
,”
Combust. Flame
,
150
(
4
), pp.
380
399
.10.1016/j.combustflame.2007.06.002
11.
Dowling
,
A. P.
,
1997
, “
Nonlinear Self-Excited Oscillations of a Ducted Flame
,”
J. Fluid Mech.
,
346
, pp.
271
290
.10.1017/S0022112097006484
12.
Noiray
,
N.
,
Bothien
,
M.
, and
Schuermans
,
B.
,
2011
, “
Investigation of Azimuthal Staging Concepts in Annular Gas Turbines
,”
Combust. Theor. Model.
,
15
(
5
), pp.
585
606
.10.1080/13647830.2011.552636
13.
Noiray
,
N.
, and
Schuermans
,
B.
,
2013
, “
On the Dynamic Nature of Azimuthal Thermoacoustic Modes in Annular Gas Turbine Combustion Chambers
,”
Proc. R. Soc. London, Ser. A
,
469
(2151), p.
20120535
.10.1098/rspa.2012.0535
14.
Ghirardo
,
G.
, and
Juniper
,
M.
,
2013
, “
Azimuthal Instabilities in Annular Combustors: Standing and Spinning Modes
,”
Proc. R. Soc. London, Ser. A
,
469
(2157), p.
2013032
.10.1098/rspa.2013.0232
15.
Nicoud
,
F.
,
Benoit
,
L.
, and
Sensiau
,
C.
,
2007
, “
Acoustic Modes in Combustors With Complex Impedances and Multidimensional Active Flames
,”
AIAA J.
,
45
(2), pp.
426
441
.10.2514/1.24933
16.
Camporeale
,
S. M.
,
Fortunato
,
B.
, and
Campa
,
G.
,
2011
, “
A Finite Element Method for Three-Dimensional Analysis of Thermo-Acoustic Combustion Instability
,”
ASME J. Eng. Gas Turbines Power
,
133
(1), p.
011506
.10.1115/1.4000606
17.
Staffelbach
,
G.
,
Gicquel
,
L. Y. M.
,
Boudier
,
G.
, and
Poinsot
,
T.
,
2009
, “
Large Eddy Simulation of Self Excited Azimuthal Modes in Annular Combustors
,”
Proc. Combust. Inst.
,
32
(2), pp.
2909
2916
.10.1016/j.proci.2008.05.033
18.
Wolf
,
P.
,
Balakrishnan
,
R.
,
Staffelbach
,
G.
,
Gicquel
,
L. Y. M.
, and
Poinsot
,
T.
,
2012
, “
Using LES to Study Reacting Flows and Instabilities in Annular Combustion Chambers
,”
Flow Turbul. Combust.
,
88
(
1–2, SI
), pp.
191
206
.10.1007/s10494-011-9367-7
19.
Wolf
,
P.
,
Staffelbach
,
G.
,
Gicquel
,
L.
,
Müller
,
J.-D.
, and
Poinsot
,
T.
,
2012
, “
Acoustic and Large Eddy Simulation Studies of Azimuthal Modes in Annular Combustion Chambers
,”
Combust. Flame
,
159
(11), pp.
3398
3413
.10.1016/j.combustflame.2012.06.016
20.
Moeck
,
J. P.
,
Paul
,
M.
, and
Paschereit
,
C. O.
,
2010
, “
Thermoacoustic Instabilities in an Annular Rijke Tube
,”
ASME
Paper No. GT2010-23577. 10.1115/GT2010-23577
21.
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2013
, “
Self-Excited Circumferential Instabilities in a Model Annular Gas Turbine Combustor: Global Flame Dynamics
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3127
3134
.10.1016/j.proci.2012.05.061
22.
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2013
, “
Modal Dynamics of Self-Excited Azimuthal Instabilities in an Annular Combustion Chamber
,”
Combust. Flame
,
160
(
11
), pp.
2476
2489
.10.1016/j.combustflame.2013.04.031
23.
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Moeck
,
J.
,
Schuller
,
T.
, and
Candel
,
S.
,
2013
, “
Self-Sustained Instabilities in an Annular Combustor Coupled by Azimuthal Acoustic Modes
,”
ASME
Paper No. GT2013-95010.10.1115/GT2013-95010
24.
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Schuller
,
T.
,
Beaunier
,
J.
, and
Candel
,
S.
,
2013
, “
Ignition Dynamics of an Annular Combustor Equipped With Multiple Swirling Injectors
,”
Combust. Flame
,
160
(
8
), pp.
1398
1413
.10.1016/j.combustflame.2013.02.014
25.
Noiray
,
N.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2008
, “
A Unified Framework for Nonlinear Combustion Instability Analysis Based on the Describing Function
,”
J. Fluid Mech.
,
615
, pp.
139
167
.10.1017/S0022112008003613
26.
Boudy
,
F.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2011
, “
Nonlinear Mode Triggering in a Multiple Flame Combustor
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1121
1128
.10.1016/j.proci.2010.05.079
27.
Kornilov
,
V. N.
,
Manohar
,
M.
, and
de Goey
,
L. P. H.
,
2009
, “
Thermo-Acoustic Behavior of Multiple Flame Burner Decks: Transfer Function Decomposition
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
1383
1390
.10.1016/j.proci.2008.05.022
28.
Durox
,
D.
,
Bourgouin
,
J.
,
Moeck
,
J.
,
Philip
,
M.
,
Schuller
,
T.
, and
Candel
,
S.
,
2013
, “
Nonlinear Interactions in Combustion Instabilities Coupled by Azimuthal Acoustic Modes
,”
International Workshop on Non-Normal and Nonlinear Effects in Aero- and Thermo-Acoustics
,
Munich
, Germany, June 18–21.
29.
Price
,
R. B.
,
Hurle
,
I. R.
, and
Sugden
,
T. M.
,
1969
, “
Optical Studies of the Generation of Noise in Turbulent Flames
,”
Proc. Combust. Inst.
,
12
(
1
), pp.
1093
1102
.10.1016/S0082-0784(69)80487-X
30.
Durox
,
D.
,
Schuller
,
T.
,
Noiray
,
N.
,
Birbaud
,
A. L.
, and
Candel
,
S.
,
2009
, “
Rayleigh Criterion and Acoustic Energy Balance in Unconfined Self-Sustained Oscillating Flames
,”
Combust. Flame
,
156
(
1
), pp.
106
119
.10.1016/j.combustflame.2008.07.016
31.
Sensiau
,
C.
,
2008
, “
Simulations numériques des instabilités thermoacoustiques dans les chambres de combustion annulaires
,” Ph.D. thesis, Université Montpellier II, Montpellier, France.
32.
Salas
,
P.
,
2013
, “
Aspects numériques et physiques des instabilités thermoacoustiques dans les chambres de combustion annulaire
,” Ph.D. thesis, Université Bordeaux I, Bordeaux, France.
33.
Schuermans
,
B.
,
Polifke
,
W.
, and
Paschereit
,
C. O.
,
1999
, “
Modeling Transfer Matrices of Premixed Flames and Comparison With Experimental Results
,”
ASME Turbo Expo
, Indianapolis, IN, June 7–10,
ASME
Paper No. 99-GT-132.
34.
Parmentier
,
J.-F.
,
Salas
,
P.
,
Wolf
,
P.
,
Staffelbach
,
G.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2012
, “
A Simple Analytical Model to Study and Control Azimuthal Instabilities in Annular Combustion Chambers
,”
Combust. Flame
,
159
(
7
), pp.
2374
2387
.10.1016/j.combustflame.2012.02.007
35.
Durox
,
D.
,
Schuller
,
T.
,
Noiray
,
N.
, and
Candel
,
S.
,
2009
, “
Experimental Analysis of Nonlinear Flame Transfer Functions for Different Flame Geometries
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
1391
1398
.10.1016/j.proci.2008.06.204
You do not currently have access to this content.