Turbochargers are key components of engine air-paths that must be carefully considered during the development process. The combination of fluid, mechanical, and thermal phenomenon make the turbocharger a highly dynamic and nonlinear modeling challenge. The aim of this study is to quantify the dynamic response of the turbocharger system across a frequency spectrum from 0.003 Hz to 500 Hz, i.e., for exhaust gas pulsation in steady state, load steps, and cold start drive cycles, to validate the assumption of quasi-steady assumptions for particular modeling problems. A waste-gated turbine was modeled using the dual orifice approach, a lumped capacitance heat transfer model, and novel, physics-based pneumatic actuator mechanism model. Each submodel has been validated individually against the experimental measurements. The turbine inlet pressure and temperature and the waste-gate actuator pressure were perturbed across the full frequency range both individually and simultaneously in separate numerical investigations. The dynamic responses of turbine housing temperature, turbocharger rotor speed, waste-gate opening, mass flow, and gas temperatures/pressures were all investigated. The mass flow parameter exhibits significant dynamic behavior above 100 Hz, illustrating that the quasi-steady assumption is invalid in this frequency range. The waste-gate actuator system showed quasi-steady behavior below 10 Hz, while the mechanical inertia of the turbine attenuated fluctuations in shaft speed for frequencies between 0.1 and 10 Hz. The thermal inertia of the turbocharger housing meant that housing temperature variations were supressed at frequencies above 0.01 Hz. The results have been used to illustrate the importance of model parameters for three transient simulation scenarios (cold start, load step, and pulsating exhaust flow).

References

1.
Copeland
,
C.
,
Newton
,
P.
,
Martinez-Botas
,
R.
, and
Seiler
,
M.
,
2012
, “
A Comparison of Timescales Within a Pulsed Flow Turbocharger Turbine
,”
IMechE, Paper (C1340/086)
, pp.
389
404
.
2.
Martin
,
G.
,
Talon
,
V.
,
Higelin
,
P.
,
Charlet
,
A.
, and
Caillol
,
C.
,
2009
, “
Implementing Turbomachinery Physics Into Data Map-Based Turbocharger Models
,”
SAE Int. J. Engines
,
2
(
1
), pp.
211
229
.
3.
Payri
,
F.
,
Benajes
,
J.
, and
Reyes
,
M.
,
1996
, “
Modelling of Supercharger Turbines in Internal-Combustion Engines
,”
Int. J. Mech. Sci.
,
38
(
8–9
), pp.
853
869
.
4.
De Bellis
,
V.
,
Marelli
,
S.
,
Bozza
,
F.
, and
Capobianco
,
M.
,
2014
, “
Advanced Numerical/Experimental Methods for the Analysis of a Waste-Gated Turbocharger Turbine
,”
SAE Int. J. Eng.
,
7
(
1
), pp.
145
155
.
5.
MacEk
,
J.
, and
Vitek
,
O.
,
2008
, “
Simulation of Pulsating Flow Unsteady Operation of a Turbocharger Radial Turbine
,”
2008 World Congress
, Apr. 14–17, SAE International, Warrendale, PA, SAE Paper No. 2008-01-0295.
6.
Aymanns
,
I. R.
,
Scharf
,
I. J.
,
Uhlmann
,
D.-I. T.
, and
Pischinger
,
I. S.
,
2012
, “
Turbocharger Efficiencies in Pulsating Exhaust Gas Flow
,”
MTZ Worldwide
,
73
(
7–8
), pp.
34
39
.
7.
Costall
,
A.
,
Szymko
,
S.
,
Martinez-Botas
,
R. F.
,
Filsinger
,
D.
, and
Ninkovic
,
D.
,
2006
, “
Assessment of Unsteady Behavior in Turbocharger Turbines
,”
ASME
Paper No. GT2006-90348.
8.
Costall
,
A.
,
Rajoo
,
S.
, and
Martinez-Botas
,
R. F.
,
2006
, “
Modelling and Experimental Study of the Unsteady Effects and Their Significance for Nozzleless and Nozzled Turbine Performance
,”
THIESEL Conference on Thermo and Fluid Dynamic Processes in Diesel Engines, pp. 537–553.
9.
Benson
,
R. S.
,
1974
, “
Nonsteady Flow in a Turbocharger Nozzleless Radial Gas Turbine
,”
National Combined Farm, Construction and Industrial Machinery and Powerplant Meetings
, Sept. 9–12, SAE International, Warrendale, PA, SAE Paper No. 740739.
10.
Wallace
,
F.
, and
Blair
,
G.
,
1965
, “
The Pulsating-Flow Performance of Inward Radial-Flow Turbines
,”
ASME
Paper No. 65-GTP-21.
11.
Wallace
,
F.
, and
Miles
,
J.
,
1970
, “
Performance of Inward Radial Flow Turbines Under Unsteady Flow Conditions With Full and Partial Admission
,”
Proc. Inst. Mech. Eng.
,
185
(
1
), pp.
1091
1105
.
12.
Kosuge
,
H.
,
Yamanaka
,
N.
,
Ariga
,
I.
, and
Watanabe
,
I.
,
1976
, “
Performance of Radial Flow Turbines Under Pulsating Flow Conditions
,”
ASME J. Eng. Gas Turbines Power
,
98
(
1
), pp.
53
59
.
13.
Capobianco
,
M.
, and
Marelli
,
S.
,
2007
, “
Waste-Gate Turbocharging Control in Automotive SI Engines: Effect on Steady and Unsteady Turbine Performance
,” SAE International, Warrendale, PA,
SAE
Paper No. 2007-01-3543.
14.
Capobianco
,
M.
, and
Marelli
,
S.
,
2010
, “
Experimental Investigation Into the Pulsating Flow Performance of a Turbocharger Turbine in the Closed and Open Waste-Gate Region
,”
9th International Conference on Turbochargers and Turbocharging
, May 19–20, Woodhead Publishing, Cambridge, UK, pp.
373
385
.
15.
Capobianco
,
M.
, and
Polidori
,
F.
,
2008
, “
Experimental Investigation on Open Waste-Gate Behaviour of Automotive Turbochargers
,” SAE International, Warrendale, PA,
SAE
Paper No. 2008-36-0052.
16.
Capobianco
,
M.
, and
Marelli
,
S.
,
2011
, “
Experimental Analysis of Unsteady Flow Performance in an Automotive Turbocharger Turbine Fitted With a Waste-Gate Valve
,”
Proc. Inst. Mech. Eng., Part D
,
225
(
8
), pp.
1087
1097
.
17.
Szymko
,
S.
,
Martinez-Botas
,
R.
, and
Pullen
,
K.
,
2005
, “
Experimental Evaluation of Turbocharger Turbine Performance Under Pulsating Flow Conditions
,”
ASME
Paper No. GT2005-68878.
18.
Watson
,
N.
,
1982
,
Turbocharging the Internal Combustion Engine
,
Macmillan
,
London
.
19.
Payri
,
F.
,
Desantes
,
J. M.
, and
Boada
,
J.
,
1986
, “
Prediction Method for the Operating Conditions of a Turbocharged Diesel Engine
,”
Motor Symposium
, Prague, Vol.
2
, pp.
8
16
.
20.
Winterbone
,
D.
,
1990
, “
The Theory of Wave Action Approaches Applied to Reciprocating Engines
,”
Internal Combustion Engineering: Science and Technology
,
Springer
,
Berlin
, pp.
445
500
.
21.
Baines
,
N. C.
,
Hajilouybenisi
,
A.
, and
Yeo
,
J. H.
,
1994
, “
The Pulse Flow Performance and Modeling of Radial Inflow Turbines
,”
Turbocharging and Turbochargers: International Conference
, Mechanical Engineering Publication, pp.
209
219
.
22.
Kessel
,
J. A.
,
Schaffnit
,
J.
, and
Schmidt
,
M.
,
1998
, “
Modelling and Real-Time Simulation of a Turbocharger With Variable Turbine Geometry (VTG)
,” 1998
SAE
International Congress and Exposition
, Feb. 23–26, SAE International, Warrendale, PA, SAE Paper No. 980770.
23.
Nasser
,
S. H.
, and
Playfoot
,
B. B.
,
1999
, “
A Turbocharger Selection Computer Model
,” SAE International, Warrendale, PA,
SAE
Paper No. 1999-01-0559.
24.
Serrano
,
J.
,
Arnau
,
F.
,
Dolz
,
V.
,
Tiseira
,
A.
, and
Cervelló
,
C.
,
2008
, “
A Model of Turbocharger Radial Turbines Appropriate to be Used in Zero-and One-Dimensional Gas Dynamics Codes for Internal Combustion Engines Modelling
,”
Energy Convers. Manage.
,
49
(
12
), pp.
3729
3745
.
25.
Marelli
,
S.
, and
Capobianco
,
M.
,
2009
, “
Measurement of Instantaneous Fluid Dynamic Parameters in Automotive Turbocharging Circuit
,”
9th International Conference on Engines and Vehicles, Consiglio Nazionale Delle Ricerche
, Capri, Naples, Italy, SAE Paper No 2009-24-0124.
26.
Galindo
,
J.
,
Climent
,
H.
,
Guardiola
,
C.
, and
Doménech
,
J.
,
2009
, “
Modeling the Vacuum Circuit of a Pneumatic Valve System
,”
ASME J. Dyn. Syst., Measurement, Control
,
131
(
3
), p.
031011
.
27.
Messina
,
A.
,
Giannoccaro
,
N. I.
, and
Gentile
,
A.
,
2005
, “
Experimenting and Modelling the Dynamics of Pneumatic Actuators Controlled by the Pulse Width Modulation (PWM) Technique
,”
Mechatronics
,
15
(
7
), pp.
859
881
.
28.
Sorli
,
M.
,
Gastaldi
,
L.
,
Codina
,
E.
, and
de las Heras
,
S.
,
1999
, “
Dynamic Analysis of Pneumatic Actuators
,”
Simul. Pract. Theory
,
7
(
5–6
), pp.
589
602
.
29.
Thomasson
,
A.
,
Eriksson
,
L.
,
Leufven
,
O.
, and
Andersson
,
P.
,
2009
, “
Wastegate Actuator Modeling and Model-Based Boost Pressure Control
,”
IFAC Proc. Vol.
,
42
(
26
), pp.
87
94
.
30.
Serrano
,
J.
,
Olmeda
,
P.
,
Arnau
,
F.
,
Reyes-Belmonte
,
M.
, and
Lefebvre
,
A.
,
2013
, “
Importance of Heat Transfer Phenomena in Small Turbochargers for Passenger Car Applications
,”
SAE
Paper No. 2013-01-0576.
31.
Mrosek
,
M.
, and
Iserman
,
R.
,
2010
, “
On the Parametrisation of the Turbocharger Power and Heat Transfer Models
,”
IFAC AAC 2010
, Munich, Germany.
32.
Shaaban
,
S.
,
2004
, “
Experimental Investigation and Extended Simulation of the Turbocharger Power and Heat Transfer Models
,” Ph.D. thesis, University of Hannover, Hannover, Germany, pp. 210–215.
33.
Casey
,
M. V.
, and
Fesich
,
T. M.
,
2010
, “
The Efficiency of Turbocharger Compressors With Diabatic Flows
,”
ASME J. Eng. Gas Turbines Power
,
132
(
7
), p.
072302
.
34.
Sirakov
,
B.
, and
Casey
,
M.
,
2012
, “
Evaluation of Heat Transfer Effects on Turbocharger Performance
,”
ASME J. Turbomach.
,
135
(
2
), p.
021011
.
35.
Romagnoli
,
A.
, and
Martinez-Botas
,
R.
,
2012
, “
Heat Transfer Analysis in a Turbocharger Turbine: An Experimental and Computational Evaluation
,”
Appl. Therm. Eng.
,
38
(
0
), pp.
58
77
.
36.
Romagnoli
,
A.
, and
Martinez-Botas
,
R.
,
2009
, “
Heat Transfer on a Turbocharger Under Constant Load Points
,”
ASME
Paper No. GT2009-59618.
37.
Chesse
,
P.
,
Chalet
,
D.
, and
Tauzia
,
X.
,
2011
, “
Impact of the Heat Transfer on the Performance Calculations of Automotive Turbocharger Compressor
,”
Oil Gas Sci. Technol.—Revue d'IFP Energies Nouvelles
,
66
(
5
), pp.
791
800
.
38.
Nakhjiri
,
M.
,
Pelz
,
P. F.
,
Matyschok
,
B.
,
Däubler
,
L.
, and
Horn
,
A.
,
2012
, “
Apparent and Real Efficiency of Turbochargers Under Influence of Heat Flow
,”
14th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
, Honolulu, HI, Feb. 27–Mar. 2.http://wl.fst.tu-darmstadt.de/wl/publications/paper_111215_isromac14_paper_heat_flow_nakhjiri_pelz.pdf
39.
Burke
,
R. D.
,
2013
, “
Analysis and Modelling of the Transient Thermal Behaviour of Automotive Turbochargers
,”
ASME
Paper No. ICEF2013-19120.
40.
Serrano
,
J. R.
,
Olmeda
,
P.
,
Arnau
,
F. J.
,
Dombrovsky
,
A.
, and
Smith
,
L.
,
2015
, “
Turbocharger Heat Transfer and Mechanical Losses Influence in Predicting Engines Performance by Using One-Dimensional Simulation Codes
,”
Energy
,
86
, pp.
204
218
.
41.
Payri
,
F.
,
Serrano
,
J.
,
Fajardo
,
P.
,
Reyes-Belmonte
,
M.
, and
Gozalbo-Belles
,
R.
,
2012
, “
A Physically Based Methodology to Extrapolate Performance Maps of Radial Turbines
,”
Energy Convers. Manage.
,
55
, pp.
149
163
.
42.
Olmeda
,
P.
,
Dolz
,
V.
,
Arnau
,
F. J.
, and
Reyes-Belmonte
,
M. A.
,
2013
, “
Determination of Heat Flows Inside Turbochargers by Means of a One Dimensional Lumped Model
,”
Math. Comput. Model.
,
57
(
7–8
), pp.
1847
1852
.
43.
Burke
,
R.
,
Copeland
,
C.
,
Duda
,
T.
, and
Reyes Belmonte
,
M.
,
2015
, “
Lumped Capacitance and 3D CFD Conjugate Heat Transfer Modelling of an Automotive Turbocharger
,”
ASME
Paper No. GT2015-42612.
44.
Burke
,
R.
,
Vagg
,
C.
,
Chalet
,
D.
, and
Chesse
,
P.
,
2015
, “
Heat Transfer in Turbocharger Turbines Under Steady, Pulsating and Transient Conditions
,”
Int. J. Heat Fluid Flow
,
52
, pp.
185
197
.
45.
Eriksson
,
L.
,
2002
, “
Mean Value Models for Exhaust System Temperatures
,” SAE International, Warrendale, PA,
SAE
Paper No. 2002-01-0374.
46.
Toussaint
,
L.
,
Marques
,
M.
,
Morand
,
N.
,
Davies
,
P.
,
Groves
,
C.
,
Tomanec
,
F.
,
Zatko
,
M.
,
Vlachy
,
D.
, and
Mrazek
,
R.
, and
Institute of Mechanical Engineers
,
2014
,
Improvement of a Turbocharger by-Pass Valve and Impact on Performance, Controllability, Noise and Durability
,
Woodhead Publishing
,
Cambridge, UK
.
47.
Jensen
,
J. P.
,
Kristensen
,
A. F.
,
Sorenson
,
S. C.
,
Houbak
,
N.
, and
Hendricks
,
E.
,
1991
, “
Mean Value Modeling of a Small Turbocharged Diesel Engine
,” SAE International, Warrendale, PA,
SAE
Paper No. 910070.
You do not currently have access to this content.