In this paper, labyrinth seal leakage is numerically quantified for an acute trapezoidal rub-groove accompanied with a rounded tooth, as a function of rub-groove sizes and tooth-groove axial positions. Analyses parameters include clearance, pressure ratio, number of teeth, and rotor speed. Labyrinth seals wear during engine transients. Radial incursion and axial movement of the rotor–stator pair cause the labyrinth teeth to rub against the unworn stator surface. The labyrinth teeth and/or stator wear depending on their material hardness. Wear damage in the form of material loss or deformation permanently increases seal clearance, and thus, leakage. This leakage is known to be dependent on the shape and geometry of the worn tooth and the stator rub groove. There are two types of reported tooth tip wear. These can be approximated as a mushroom shape and a round shape. The stator rub-groove shapes can be approximately simulated in five forms: rectangle, trapezoid (isosceles and acute), triangle, and ellipse. In this paper, the acute trapezoidal rub-groove shape is specifically chosen, since it is the most similar to the most commonly observed rub-groove form. The tooth tip is considered to be rounded, because the tooth tip wears smoothly and a round shape forms during rub-groove formation. To compare the unworn tooth, the flat stator is also analyzed as a reference case. All analyzed parameters for geometric dimensions (groove width, depth, wall angle, and tooth-groove axial position) and operating conditions (flow direction, clearance, pressure ratio, number of teeth, and rotor speed) are analyzed in their practical ranges. Computational fluid dynamics (CFD) analyses are carried out by employing a compressible turbulent flow solver in a 2D axisymmetrical coordinate system. CFD analyses show that the rounded tooth leaks more than an unworn sharp-edged tooth, due to the formation of a smooth and streamlined flow around the rounded geometry. This smooth flow yields less flow separation, flow disturbance, and less of vena contracta effect. The geometric dimensions of the acute trapezoidal rub-groove (width, depth, wall angle) significantly affect leakage. The effects of clearance, pressure ratio, number of teeth, and rotor speed on the leakage are also quantified. Analyses results are separately evaluated for each parameter.

References

1.
Chupp
,
R. E.
,
Hendricks
,
R. C.
,
Lattime
,
S. B.
, and
Steinetz
,
B. M.
,
2006
, “
Sealing in Turbomachinery
,”
Report No. NASA-TM 2006-214341
.
2.
Ghasripoor
,
F.
,
Turnquist
,
N. A.
, and
Kowalczyk
,
M.
,
2004
, “
Wear Prediction of Strip Seals Through Conductance
,”
ASME
Paper No. GT2004-53297.
3.
Neef
,
M.
,
Sulda
,
E.
,
Sürken
,
N.
, and
Walkenhorst
,
J.
,
2006
, “
Design Features and Performance Details of Brush Seals for Turbine Applications
,”
ASME
Paper No. GT2006-90404.
4.
Wilson
,
S.
,
2007
, “
Ensuring Tight Seals
,” Vol.
2
,
Sulzer Technical Review
,
89
(2), pp. 23–25.
5.
Herrmann
,
N.
,
Dullenkopf
,
K.
, and
Bauer
,
H.-J.
,
2013
, “
Flexible Seal Strip Design for Advanced Labyrinth Seals in Turbines
,”
ASME
Paper No: GT2013-95424.
6.
Combined Cycle Journal
,
2014
, CCJ ONsite, Las Vegas, NV, accessed Oct. 20 2014, http://www.ccj-online.com/501fg-users-benefit-from-presentations-by-non-oem-equipmentservices-providers-1-of-2/
7.
Pychynski
,
T.
,
Höfler
,
C.
, and
Bauer
,
H.-J.
,
2016
, “
Experimental Study on the Friction Contact Between a Labyrinth Seal Fin and a Honeycomb Stator
,”
ASME J. Eng. Gas Turbines Power
,
138
(
6
), p.
062501
.
8.
Zimmerman
,
H.
,
Kammerer
,
A.
, and
Wolff
,
K. H.
,
1994
, “
Performance of Worn Labyrinth Seals
,”
ASME
Paper No. 94-GT-131.
9.
Bill
,
R. C.
, and
Shiembob
,
L. T.
,
1977
, “
Friction and Wear of Sintered Fibermetal Abradable Seal Materials
,”
J. Lubrication Tech.
,
99
(
4
), pp.
421
427
.
10.
Chougule
,
H. H.
,
Ramerth
,
D.
,
Ramchandran
,
D.
, and
Kandala
,
R.
,
2006
, “
Numerical Investigation of Worn Labyrinth Seals
,”
ASME
Paper No. GT2006-90690.
11.
Delebarre
,
C.
,
Wagner
,
V.
,
Paris
,
J. Y.
,
Dessein
,
G.
,
Denape
,
J.
, and
Gurt-Santanach
,
J.
,
2014
, “
An Experimental Study of The High Speed Interaction Between a Labyrinth Seal and an Abradable Coating in a Turbo-Engine Application
,”
Wear
,
316
(
1–2
), pp.
109
118
.
12.
Xu
,
J.
,
2006
, “
Effects of Operating Damage of Labyrinth Seal on Seal Leakage and Wheelspace Hot Gas Ingress
,”
Ph.D. thesis
, Texas A&M University, College Station, TX.
13.
Yan
,
X.
,
Lijie
,
L.
,
Li
,
J.
, and
Zhenping
,
F.
,
2014
, “
Effect of Bending and Mushrooming Damages on Heat Transfer Characteristic in Labyrinth Seals
,”
ASME J. Eng. Gas Turbines Power
,
136
(
4
), p.
041901
.
14.
Dogu
,
Y.
,
Sertçakan
,
M. C.
,
Bahar
,
A. S.
,
Pişkin
,
A.
,
Arıcan
,
E.
, and
Kocagül
,
M.
,
2016
, “
Computational Fluid Dynamics Investigation of Labyrinth Seal Leakage Performance Depending on Mushroom-Shaped Tooth Wear
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
032503
.
15.
Keller
,
C.
,
1937
, “
Flow Through Labyrinth Glands
,”
Power Plant Eng.
,
41
(
4
), pp.
243
245
.
16.
ESDU
,
2009
, “
Labyrinth Seal Flow
,” The Institution of Mechanical Engineers, Bracknell, UK,
Standard No. ESDU 09004
.
17.
Rhode
,
D. L.
, and
Adams
,
R. G.
,
2001
, “
Computed Effect of Rub-Groove Size on Stepped Labyrinth Seal Performance
,”
Tribol. Trans.
,
44
(
4
), pp.
523
532
.
18.
Rhode
,
D. L.
, and
Adams
,
R. G.
,
2004
, “
Rub-Groove Width and Depth Effects on Flow Predictions for Straight-Through Labyrinth Seals
,”
ASME J. Tribol.
,
126
(
4
), pp.
781
787
.
19.
Xu
,
J.
,
Ambrosia
,
M. S.
, and
Rhode
,
D. L.
,
2005
, “
Effect of Rub-Groove Wall Angle on the Leakage of Abradable Stepped Labyrinth Seals
,”
Tribol. Trans.
,
48
(
4
), pp.
443
449
.
20.
Pychynski
,
T.
,
Dullenkopf
,
K.
,
Bauer
,
H.-J.
, and
Mikut
,
R.
,
2010
, “
Modelling The Labyrinth Seal Discharge Coefficient Using Data Mining Methods
,”
ASME
Paper No. GT2010-22661.
21.
Wang
,
W. Z.
,
Liu
,
Y. Z.
,
Meng
,
G.
, and
Jiang
,
P. N.
,
2010
, “
Influence of Rub Groove on Rotordynamics Associated With Leakage Air Flow Through a Labyrinth Seal
,”
J. Mech. Sci. Tech.
,
24
(
8
), pp.
1573
1581
.
22.
Pandit
,
R. K.
, and
Innocenti
,
L.
,
2013
, “
Computational Analysis of Abradable Seal—Part 1
,”
ASME
Paper No. GT2013-94085.
23.
Rhode
,
D. L.
, and
Allen
,
B. F.
,
1998
, “
Visualization and Measurements of Rub-Groove Leakage Effects on Straight-Through Labyrinth Seals
,”
ASME
Paper No. 98-GT-506.
24.
Rhode
,
D. L.
, and
Allen
,
B. F.
,
2001
, “
Measurement and Visualization of Leakage Effects of Rounded Teeth Tips and Rub-Grooves on Stepped Labyrinths
,”
ASME J. Eng. Gas Turbines Power
,
123
(
3
), pp.
604
611
.
25.
Denecke
,
J.
,
Schramm
,
V.
,
Kim
,
V.
, and
Wittig
,
S.
,
2003
, “
Influence of Rub-Grooves on Labyrinth Seal Leakage
,”
ASME J. Turbomach.
,
125
(
2
), pp.
387
393
.
26.
Innocenti
,
L.
,
Recupero
,
S.
,
Pandit
,
R. K.
, and
Sheng
,
N.
,
2013
, “
Experimental Analysis of Abradable Labyrinth Seal Leakage With Simulated Groove—Part 2
,”
ASME
Paper No. GT2013-95646.
27.
Collins
,
D.
,
Teixeira
,
J.
, and
Crudgington
,
P.
,
2008
, “
The Degradation of Abradable Honeycomb Labyrinth Seal Performance Due to Wear
,”
Sealing Technol.
,
2008
(
8
), pp.
7
10
.
28.
Nayak
,
K. C.
, and
Dutta
,
P.
,
2016
, “
Effect of Rub-Grooves on Leakage and Windage Heating in Straight-Through Labyrinth Seals
,”
ASME J. Tribol.
,
138
(
2
), p.
022201
.
29.
Dogu
,
Y.
,
Sertçakan
,
M. C.
,
Gezer
,
K.
,
Arıcan
,
E.
,
Kocagül
,
M.
, and
Ozmusul
,
M. S.
,
2016
, “
Labyrinth Seal Leakage Degradation Due To Various Types of Wear
,”
ASME
Paper No. GT2016-57944.
30.
ANSYS
,
2013
, “
ANSYS Fluent User's Guide, Release 15
,”
Ansys, Inc.
, Canonsburg, PA.
31.
Waschka
,
W.
,
Wittig
,
S.
, and
Kim
,
S.
,
1992
, “
Influence of High Rotational Speeds on the Heat Transfer and Discharge Coefficients in Labyrinth Seals
,”
ASME J. Turbomach.
,
114
(
2
), pp.
462
468
.
32.
Wittig
,
S.
,
Jacobsen
,
K.
,
Schelling
,
U.
, and
Kim
,
S.
,
1988
, “
Heat Transfer in Stepped Labyrinth Seal
,”
ASME J. Eng. Gas Turbines Power
,
110
(
1
), pp.
63
69
.
You do not currently have access to this content.