This article focuses on combustion instabilities (CI) driven by entropy fluctuations which is of great importance in practical devices. A simplified geometry is introduced. It keeps the essential features of an aeronautical combustion chamber (swirler, dilution holes, and outlet nozzle), while it is simplified sufficiently to ease the analysis (rectangular vane, one row of holes of the same diameter, no diffuser at the inlet of the chamber, and circular nozzle at the outlet). A large eddy simulation (LES) is carried out on this geometry and the limit cycle of a strong CI involving the convection of an entropy spot is obtained. The behavior of the instability is analyzed using phenomenological description and classical signal analysis. One shows that the system can be better described by considering two reacting zones: a rich mainly premixed flame is located downstream of the swirler and an overall lean diffusion flame is stabilized next to the dilution holes. In a second step, dynamic mode decomposition (DMD) is used to visualize, analyze, and model the complex phasing between different processes affecting the reacting zones. Using these data, a zero-dimensional (0D) modeling of the premixed flame and of the diffusion flame is proposed. These models provide an extended understanding of the combustion process in an aeronautical combustor and could be used or adapted to address mixed acoustic-entropy CI in an acoustic code.

References

1.
Rayleigh
,
J. W. S.
,
1878
, “
The Explanation of Certain Acoustical Phenomena
,”
Nature
,
18
(
455
), pp.
319
321
.
2.
Lieuwen
,
T. C.
, and
Yang
,
V.
,
2005
,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms and Modeling
(Progress in Astronautics and Aeronautics), American Institute of Aeronautics and Astronautics, Reston, VA.
3.
Culick
,
F. E.
, and
Kuentzmann
,
P.
,
2006
, “
Unsteady Motions in Combustion Chambers for Propulsion Systems
,” North Atlantic Treaty Organization, Neuilly-sur-Seine, France, Report No.
AC/323 (AVT-039) TP/103
.https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjG5Y2bo8XWAhUK04MKHeECBQkQFgglMAA&url=http%3A%2F%2Fwww.dtic.mil%2Fget-tr-doc%2Fpdf%3FAD%3DADA466461&usg=AFQjCNHn8R8j0VaE66Up6AJXm2-kZP50lQ
4.
Marble
,
F. E.
, and
Candel
,
S. M.
,
1977
, “
Acoustic Disturbance From Gas Non-Uniformities Convected Through a Nozzle
,”
J. Sound Vib.
,
55
(
2
), pp.
225
243
.
5.
Miles
,
J. H.
,
2010
, “
Separating Direct and Indirect Turbofan Engine Combustion Noise Using the Correlation Function
,”
J. Propul. Power
,
26
(
5
), pp.
1144
1152
.
6.
Durán
,
I.
,
Moreau
,
S.
, and
Poinsot
,
T.
,
2013
, “
Analytical and Numerical Study of Combustion Noise Through a Subsonic Nozzle
,”
AIAA J.
,
51
(
1
), pp.
42
52
.
7.
Abouseif
,
G. E.
,
Keklak
,
J. A.
, and
Toong
,
T. Y.
,
1984
, “
Ramjet Rumble: The Low-Frequency Instability Mechanism in Coaxial Dump Combustors
,”
Combust. Sci. Technol.
,
36
(
1–2
), pp.
83
108
.
8.
Keller
,
J. J.
,
Egli
,
W.
, and
Hellat
,
J.
,
1985
, “
Thermally Induced Low-Frequency Oscillations
,”
Z. Angew. Math. Phys. ZAMP
,
36
(
2
), pp.
250
274
.
9.
Motheau
,
E.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2012
, “
Using Boundary Conditions to Account for Mean Flow Effects in a Zero Mach Number Acoustic Solver
,”
ASME J. Eng. Gas Turbines Power
,
134
(
11
), p.
111502
.
10.
Crocco
,
L.
,
1952
, “
Aspects of Combustion Stability in Liquid Propellant Rocket Motors Part II: Low Frequency Instability With Bipropellants. High Frequency Instability
,”
J. Am. Rocket Soc.
,
22
(
1
), pp.
7
16
.
11.
Crocco
,
L.
, and
Cheng
,
S. I.
,
1953
, “
High Frequency Combustion Instability in Rockets With Distributed Combustion
,”
Symp. (Int.) Combust.
,
4
(
1
), pp.
865
880
.
12.
Keller
,
J. J.
,
1995
, “
Thermoacoustic Oscillations in Combustion Chambers of Gas Turbines
,”
AIAA J.
,
33
(
12
), pp.
2280
2287
.
13.
Dowling
,
A. P.
, and
Stow
,
S. R.
,
2003
, “
Acoustic Analysis of Gas Turbine Combustors
,”
J. Propul. Power
,
19
(
5
), pp.
751
764
.
14.
You
,
D.
,
Huang
,
Y.
, and
Yang
,
V.
,
2005
, “
A Generalized Model of Acoustic Response of Turbulent Premixed Flame and Its Application to Gas-Turbine Combustion Instability Analysis
,”
Combust. Sci. Technol.
,
177
(
5–6
), pp.
1109
1150
.
15.
Dowling
,
A. P.
,
1995
, “
The Calculation of Thermoacoustic Oscillations
,”
J. Sound Vib.
,
180
(
4
), pp.
557
581
.
16.
Hubbard
,
S.
, and
Dowling
,
A. P.
,
2000
, “
Acoustic Resonances of an Industrial Gas Turbine Combustion System
,”
ASME
Paper No. 2000-GT-0094.
17.
Zhu
,
M.
,
Dowling
,
A. P.
, and
Bray
,
K. N. C.
,
2000
, “
Self-Excited Oscillations in Combustors With Spray Atomisers
,”
ASME J. Eng. Gas Turbines Power
,
123
(
4
), pp.
779
786
.
18.
Yao
,
Z.
,
Gao
,
Y.
,
Zhu
,
M.
,
Dowling
,
A. P.
, and
Bray
,
K. N. C.
,
2012
, “
Combustion Rumble Prediction With Integrated Computational-Fluid-Dynamics/Low-Order-Model Methods
,”
J. Propul. Power
,
28
(
5
), pp.
1015
1025
.
19.
Hochgreb
,
S.
,
Dennis
,
D.
,
Ayranci
,
I.
,
Bainbridge
,
W.
, and
Cant
,
S.
,
2013
, “
Forced and Self-Excited Instabilities From Lean Premixed, Liquid-Fueled Aeroengine Injectors at High Pressures and Temperatures
,”
ASME
Paper No. GT2013-9531.
20.
Motheau
,
E.
,
Mery
,
Y.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2013
, “
Analysis and Modeling of Entropy Modes in a Realistic Aeronautical Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
135
(
9
), p.
092602
.
21.
Motheau
,
E.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2014
, “
Mixed Acoustic–Entropy Combustion Instabilities in Gas Turbines
,”
J. Fluid Mech.
,
749
, pp.
542
576
.
22.
Chen
,
L. S.
,
Bomberg
,
S.
, and
Polifke
,
W.
,
2016
, “
Propagation and Generation of Acoustic and Entropy Waves Across a Moving Flame Front
,”
Combust. Flame
,
166
, pp.
170
180
.
23.
Candel
,
S.
,
2002
, “
Combustion Dynamics and Control: Progress and Challenges
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
1
28
.
24.
Lieuwen
,
T.
,
2003
, “
Modeling Premixed Combustion-Acoustic Wave Interactions: A Review
,”
J. Propul. Power
,
19
(
5
), pp.
765
781
.
25.
Noiray
,
N.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2008
, “
A Unified Framework for Nonlinear Combustion Instability Analysis Based on the Flame Describing Function
,”
J. Fluid Mech.
,
615
, pp.
139
167
.
26.
Colin
,
O.
, and
Rudgyard
,
M.
,
2000
, “
Development of High-Order Taylor–Galerkin Schemes for LES
,”
J. Comput. Phys.
,
162
(
2
), pp.
338
371
.
27.
Colin
,
O.
,
Ducros
,
F.
,
Veynante
,
D.
, and
Poinsot
,
T.
,
2000
, “
A Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion
,”
Phys. Fluids (1994-Present)
,
12
(
7
), pp.
1843
1863
.
28.
Franzelli
,
B.
,
Riber
,
E.
,
Sanjosé
,
M.
, and
Poinsot
,
T.
,
2010
, “
A Two-Step Chemical Scheme for Kerosene–Air Premixed Flames
,”
Combust. Flame
,
157
(
7
), pp.
1364
1373
.
29.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations: I. The Basic Experiment
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.
30.
Poinsot
,
T.
, and
Lele
,
S.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
.
31.
Schmitt
,
P.
,
Poinsot
,
T.
,
Schuermans
,
B.
, and
Geigle
,
K. P.
,
2007
, “
Large-Eddy Simulation and Experimental Study of Heat Transfer, Nitric Oxide Emissions and Combustion Instability in a Swirled Turbulent High-Pressure Burner
,”
J. Fluid Mech.
,
570
, pp.
17
46
.
32.
Schmid
,
P. J.
,
2010
, “
Dynamic Mode Decomposition of Numerical and Experimental Data
,”
J. Fluid Mech.
,
656
, pp.
5
28
.
33.
Rowley
,
C. W.
,
Mezić
,
I.
,
Bagheri
,
S.
,
Schlatter
,
P.
, and
Henningson
,
D. S.
,
2009
, “
Spectral Analysis of Nonlinear Flows
,”
J. Fluid Mech.
,
641
, pp.
115
127
.
34.
Pavri
,
R.
, and
Moore
,
G. D.
,
2001
, “
Gas Turbine Emissions and Control
,” General Electric Power Systems, Atlanta, GA, Report No.
GER-4211
.https://www.scribd.com/document/225936874/Gas-turbine-emission-and-control-General-Electric
You do not currently have access to this content.