Abstract

The aeroacoustic characteristics of a power module in the electric vehicle charging pile is studied by experimental and numerical methods. In the free field, a single cooling fan mainly emits tonal noise, while the far-field noise of fans in parallel satisfied the superposition of incoherent sound sources. However, when two fans in parallel delivered air into the power module, the noise increased significantly, especially broadband noise. Referring to the power module, a narrow space model with cooling fan supplying air inward is constructed. The computational fluid dynamics results show that the mass flowrate of the fan is reduced due to the obstacles downstream, which weakens the heat dissipation performance. Part of the fluid forms reflux, interacts with the fan and strengthens the corner vortex. By setting guide holes on the casing near the flow blockage to arrange flow, the flow resistance is reduced and the total mass flowrate of the fan is increased by 2.5%. The reflux and corner vortex are dispersed, and the vortices develop downstream, thus reducing the interaction with the fan. The predicted tonal sound pressure level (SPL) decreases by 3.2 dBA based on acoustic analogy method. The broadband noise caused by shedding vortex is also predicted and discussed by a semi-empirical model. In the noise reduction experiment of the real power module, combining inlet bellmouth on the fan and guide holes on the casing, the total SPL was significantly reduced by 2.9 dBA. Especially, based on bellmouth, guide holes brought an additional 1.9 dBA tonal noise reduction and 1.0 dBA total SPL reduction. The study indicates that appropriate flow control is important to improve the heat dissipation and reduce noise of the power module. These results are helpful to develop higher power charging system.

References

1.
Wenbo
,
Z.
,
Ganxin
,
J.
,
Jianqiang
,
Z.
,
Lin
,
G.
,
Gan
,
W.
,
Jiaqi
,
L.
, and
Yongsen
,
W.
,
2020
, “
Research on Reliability of DC Charging Pile Based on Analysis of Internal Function
,” Asia Energy and Electrical Engineering Symposium (
AEEES
),
Chengdu, China
, May 29–31, pp.
318
322
.10.1109/AEEES48850.2020.9121501
2.
Lin
,
S. C.
, and
Chou
,
C. A.
,
2004
, “
Blockage Effect of Axial-Flow Fans Applied on Heat Sink Assembly
,”
Appl. Therm. Eng.
,
24
(
16
), pp.
2375
2389
.10.1016/j.applthermaleng.2004.03.009
3.
Lin
,
S. C.
,
Chuang
,
F. S.
, and
Chou
,
C. A.
,
2005
, “
Experimental Study of the Heat Sink Assembly With Oblique Straight Fins
,”
Exp. Therm. Fluid Sci.
,
29
(
5
), pp.
591
600
.10.1016/j.expthermflusci.2004.08.003
4.
Krömer
,
F. J.
,
2018
,
Sound Emission of Low-Pressure Axial Fans Under Distorted Inflow Conditions
,
FAU University Press
,
Erlangen, Germany
.
5.
Blake
,
W. K.
,
2017
,
Mechanics of Flow-Induced Sound and Vibration, Volume 2: Complex Flow-Structure Interactions
,
Academic Press
,
London, UK
.
6.
Tyler
,
J. M.
, and
Sofrin
,
T. G.
,
1962
, “
Axial Flow Compressor Noise Studies
,”
SAE
Paper No. 620532.10.4271/620532
7.
Wright
,
S. E.
,
1976
, “
The Acoustic Spectrum of Axial Flow Machines
,”
J. Sound. Vib.
,
45
(
2
), pp.
165
223
.10.1016/0022-460X(76)90596-4
8.
Huang
,
L.
,
2003
, “
Characterizing Computer Cooling Fan Noise
,”
J. Acoust. Soc. Am.
,
114
(
6
), pp.
3189
3200
.10.1121/1.1624074
9.
Tian
,
J.
,
Sun
,
Z.
,
Chai
,
P.
, and
Ouyang
,
H.
,
2020
, “
Study on the Influence of Inlet Asymmetry on Aerodynamic Noise of Cooling Fan
,”
ASME J. Eng. Gas Turbines Power
,
142
(
12
), p.
121014
.10.1115/1.4048449
10.
Sun
,
Z.
,
Tian
,
J.
,
Liśkiewicz
,
G.
,
Du
,
Z.
, and
Ouyang
,
H.
,
2022
, “
Noise Reduction Analysis of Electronic Device Cooling Fan With Duct and Its Application Under Variable Working Conditions
,”
ASME J. Eng. Gas Turbines Power
,
144
(
2
), p.
021008
.10.1115/1.4052429
11.
Wang
,
J.
, and
Huang
,
L.
,
2006
, “
Quantification and Control of Noise Sources in a Small Axial-Flow Fan
,”
Noise Control. Eng. J.
,
54
(
1
), pp.
27
32
.10.3397/1.2888776
12.
Liu
,
N.
,
Jiang
,
C.
,
Huang
,
L.
, and
Wang
,
C.
,
2021
, “
Effect of Porous Casing on Small Axial-Flow Fan Noise
,”
Appl. Acoust.
,
175
, p.
107808
.10.1016/j.apacoust.2020.107808
13.
Hunt
,
A. G.
,
Savory
,
E.
,
Gifford
,
N. L.
, and
Martinuzzi
,
R. J.
,
2009
, “
Downstream Blockage Corrections of Automotive Cooling Fan Module Performance
,”
SAE
Paper No. 2009-01-0175.10.4271/2009-01-0175
14.
Lin
,
S. C.
, and
Tsai
,
M. L.
,
2010
, “
An Integrated Performance Analysis for a Small Axial-Flow Fan
,”
Proc. Inst. Mech. Eng., Part C
,
224
(
9
), pp.
1981
1994
.10.1243/09544062JMES1829
15.
Stafford
,
J.
,
Walsh
,
E.
,
Egan
,
V.
, and
Grimes
,
R.
,
2010
, “
Flat Plate Heat Transfer With Impinging Axial Fan Flows
,”
Int. J. Heat. Mass Transfer
,
53
(
25–26
), pp.
5629
5638
.10.1016/j.ijheatmasstransfer.2010.08.020
16.
Stafford
,
J.
,
Fortune
,
F.
, and
Newport
,
D.
,
2012
, “
Thermal Performance Characteristics of Integrated Cooling Solutions Consisting of Multiple Miniature Fans
,”
J. Phys. Conf. Ser.
,
395
(
1
), p.
012029
.10.1088/1742-6596/395/1/012029
17.
Stafford
,
J.
, and
Fortune
,
F.
,
2014
, “
Investigation of Multiple Miniature Axial Fan Cooling Solutions and Thermal Modeling Approaches
,”
ASME J. Electron. Packag.
,
136
(
1
), p.
011008
.10.1115/1.4026351
18.
Heo
,
S.
,
Ha
,
M.
,
Kim
,
T. H.
, and
Cheong
,
C.
,
2015
, “
Development of High-Performance and Low-Noise Axial-Flow Fan Units in Their Local Operating Region
,”
J. Mech. Sci. Technol.
,
29
(
9
), pp.
3653
3662
.10.1007/s12206-015-0809-3
19.
Lighthill
,
M. J.
,
1952
, “
On Sound Generated Aerodynamically I. General Theory
,”
Proc. R. Soc. Lond. A
,
211
(
1107
), pp.
564
587
.10.1098/rspa.1952.0060
20.
Curle
,
N.
,
1955
, “
The Influence of Solid Boundaries Upon Aerodynamic Sound
,”
Proc. R. Soc. Lond. A
,
231
(
1187
), pp.
505
514
.10.1098/rspa.1955.0191
21.
Ffowcs Williams
,
J. E.
, and
Hawkings
,
D. L.
,
1969
, “
Sound Generation by Turbulence and Surfaces in Arbitrary Motion
,”
Philos. Trans. R. Soc. Lond. A
,
264
(
1151
), pp.
321
342
.10.1098/rsta.1969.0031
22.
Farassat
,
F.
,
1994
, “
Introduction to Generalized Functions With Applications in Aerodynamics and Aeroacoustics
,” NASA Paper No.
3428
.https://ntrs.nasa.gov/citations/19940029887
23.
Brentner
,
K. S.
, and
Farassat
,
F.
,
1998
, “
Analytical Comparison of the Acoustic Analogy and Kirchhoff Formulation for Moving Surfaces
,”
AIAA J.
,
36
(
8
), pp.
1379
1386
.10.2514/2.558
24.
Farassat
,
F.
, and
Succi
,
G. P.
,
1982
, “
The Prediction of Helicopter Rotor Discrete Frequency Noise
,”
38th Annual Forum of American Helicopter Society
,
Anaheim
, CA, May 4–7, pp.
497
507
.https://ui.adsabs.harvard.edu/abs/1982ahs..proc..497F/abstract
25.
Brentner
,
K. S.
,
1986
, “
Prediction of Helicopter Rotor Discrete Frequency Noise: A Computer Program Incorporating Realistic Blade Motions and Advanced Acoustic Formulation
,” NASA Technical Memorandum No.
87721
.https://ntrs.nasa.gov/api/citations/19870001317/downloads/19870001317.pdf
26.
ISO Standard 5801
,
2007
,
Industrial Fans—Performance Testing Using Standardized Airways
,
International Organization for Standardization
,
Geneva, Switzerland
.
27.
Liu
,
C.
,
Wang
,
Y.
,
Yang
,
Y.
, and
Duan
,
Z.
,
2016
, “
New Omega Vortex Identification Method
,”
Sci. China. Phys. Mech.
,
59
(
8
), pp.
1
9
.10.1007/s11433-016-0022-6
28.
Doak
,
P. E.
,
1960
, “
Acoustic Radiation From a Turbulent Fluid Containing Foreign Bodies
,”
Proc. R. Soc. Lond. A
,
254
(
1276
), pp.
129
146
.10.1098/rspa.1960.0010
29.
Sharland
,
I. J.
,
1964
, “
Sources of Noise in Axial Flow Fans
,”
J. Sound. Vib.
,
1
(
3
), pp.
302
322
.10.1016/0022-460X(64)90068-9
30.
Fukano
,
T.
,
Kodama
,
Y.
, and
Senoo
,
Y.
,
1977
, “
Noise Generated by Low Pressure Axial Flow Fans, I: Modelling of the Turbulent Noise
,”
J. Sound. Vib.
,
50
(
1
), pp.
63
74
.10.1016/0022-460X(77)90551-X
You do not currently have access to this content.