Abstract

Stricter aviation emissions regulations have led to the desire for lean-premixed-vaporized (LPP) combustors over rich–quench–lean (RQL) burners. While this operation mode is beneficial for reducing NOx and particulate emissions, the interaction of the flame and hot exhaust gases with the cooling flow results in increased CO emissions. Predicting CO in computational fluid dynamics (CFD) simulations remains challenging. To assess current model performance under practically relevant conditions, large-eddy simulation (LES) of a lab-scale effusion cooling test-rig is performed. Flamelet-based manifolds, in combination with the artificial thickened flame (ATF) approach, are utilized to model the turbulence–chemistry interaction (TCI) in the test-rig with detailed chemical kinetics at reduced computational costs. Heat losses are considered via exhaust gas recirculation (EGR). Local transport effects in CO emissions are included through an additional transport equation. Additionally, a conjugate heat transfer (CHT) simulation is performed for good estimations of the thermal boundary conditions. Extensive validation of this comprehensive model is conducted using the available experimental dataset for the studied configuration. Subsequently, model sensitivities for predicting CO are assessed, including the progress variable definition and the formulation of the CO source term in the corresponding transport equation. To investigate the flame thickening influence in the calculated CO, an ATF post-processing correction is further developed. Integrating multiple sophisticated pollutant submodels and evaluating their sensitivity offers insights for future investigations into modeling CO emissions in aero-engines and stationary gas turbines.

References

2.
Directorate-General for Mobility and Transport (European Commision) and Directorate-General for Research and Innovation (European Commision),
2011
,
Flightpath 2050 Europe's Vision for Aviation,
Brussels, Belgium.10.2777/50266
3.
Angersbach
,
A.
,
Bestie
,
D.
, and
Eggels
,
R.
,
2013
, “
Automated Combustor Preliminary Design Using Tools of Different Fidelity
,”
ASME
Paper No. GT2013-94411.10.1115/GT2013-94411
4.
Eggels
,
R. L. G. M.
,
2018
, “
The Application of Combustion LES Within Industry
,” D. G. E. Grigoriadis, B. J. Geurts, H. Kuerten, J. Froehlich, and V. Armenio, eds.,
Direct and Large-Eddy Simulation X,
Springer International Publishing, Cham, Switzerland, pp. 3–13.
5.
Popp
,
S.
,
2020
, “
Large Eddy Simulation of Turbulent Multi-Regime Combustion: Potentials and Limitations of Flamelet-Based Chemistry Modeling,”
Verlag Dr. Hut.
Ph.D. thesis, TU Darmstadt, Darmstadt, Germany.
6.
Popp
,
S.
,
Hartl
,
S.
,
Butz
,
D.
,
Geyer
,
D.
,
Dreizler
,
A.
,
Vervisch
,
L.
, and
Hasse
,
C.
,
2021
, “
Assessing Multi-Regime Combustion in a Novel Burner Configuration With Large Eddy Simulations Using Tabulated Chemistry
,”
Proc. Combust. Inst.
,
38
(
2
), pp.
2551
2558
.10.1016/j.proci.2020.06.098
7.
Koob
,
P.
,
Ferraro
,
F.
,
Nicolai
,
H.
,
Eggels
,
R.
,
Staufer
,
M.
, and
Hasse
,
C.
,
2024
, “
Large Eddy Simulation of Soot Formation in a Real Aero-Engine Combustor Using Tabulated Chemistry and a Quadrature-Based Method of Moments
,”
ASME J. Eng. Gas Turbines Power
,
146
(
1
), p.
011015
.10.1115/1.4063376
8.
Haselbach
,
F.
,
Newby
,
A.
, and
Parker
,
R.
,
2014
, “
Concepts and Technologies for the Next Generation of Large Civil Aircraft Engines
,”
Proceedings of the ICAS Gas Turbine India Conference—2013
,
St. Petersburg, Russia
, Sept. 7–12, pp.
1
10
.https://icas.org/ICAS_ARCHIVE/ICAS2014/data/papers/2014_0078_paper.pdf
9.
Behrendt
,
T.
, and
Hassa
,
C.
,
2008
, “
A Test Rig for Investigations of Gas Turbine Combustor Cooling Concepts Under Realistic Operating Conditions
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
222
(
2
), pp.
169
177
.10.1243/09544100JAERO288
10.
Schulz
,
A.
,
2001
, “
Combustor Liner Cooling Technology in Scope of Reduced Pollutant Formation and Rising Thermal Efficiencies
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
135
146
.10.1111/j.1749-6632.2001.tb05848.x
11.
Klarmann
,
N.
,
Zoller
,
B. T.
, and
Sattelmayer
,
T.
,
2019
, “
Modeling of CO Emissions in Multi-Burner Systems With Fuel Staging
,”
ASME
Paper No. GT2019-90821.10.1115/GT2019-90821
12.
Greifenstein
,
M.
,
Hermann
,
J.
,
Boehm
,
B.
, and
Dreizler
,
A.
,
2019
, “
Flame–Cooling Air Interaction in an Effusion-Cooled Model Gas Turbine Combustor at Elevated Pressure
,”
Exp. Fluids
,
60
(
1
), p.
10
.10.1007/s00348-018-2656-3
13.
Greifenstein
,
M.
, and
Dreizler
,
A.
,
2021
, “
Influence of Effusion Cooling Air on the Thermochemical State of Combustion in a Pressurized Model Single Sector Gas Turbine Combustor
,”
Combust. Flame
,
226
, pp.
455
466
.10.1016/j.combustflame.2020.12.031
14.
Greifenstein
,
M.
,
2021
, “
Experimental Investigations of Flame-Cooling Air Interaction in an Effusion Cooled Pressurized Single Sector Model Gas Turbine Combustor
,” Ph.D. thesis, TU Darmstadt, Darmstadt, Germany.
15.
Greifenstein
,
M.
, and
Dreizler
,
A.
,
2023
, “
Influence of Effusion Cooling Air on the CO Production in the Primary Zone of a Pressurized Single Sector Model Gas Turbine Combustor
,”
Combust. Flame
,
248
, p.
112511
.10.1016/j.combustflame.2022.112511
16.
Efimov
,
D. V.
,
De Goey
,
P.
, and
Van Oijen
,
J. A.
,
2020
, “
QFM: Quenching Flamelet-Generated Manifold for Modelling of Flame–Wall Interactions
,”
Combust. Theory Model.
,
24
(
1
), pp.
72
104
.10.1080/13647830.2019.1658901
17.
Steinhausen
,
M.
,
Luo
,
Y.
,
Popp
,
S.
,
Strassacker
,
C.
,
Zirwes
,
T.
,
Kosaka
,
H.
, and
Zentgraf
,
F.
, et al.,
2021
, “
Numerical Investigation of Local Heat-Release Rates and Thermo-Chemical States in Side-Wall Quenching of Laminar Methane and Dimethyl Ether Flames
,”
Flow Turbul. Combust.
,
106
(
2
), pp.
681
700
.10.1007/s10494-020-00146-w
18.
Oijen
,
J. V.
, and
Goey
,
L. D.
,
2000
, “
Modelling of Premixed Laminar Flames Using Flamelet-Generated Manifolds
,”
Combust. Sci. Technol.
,
161
(
1
), pp.
113
137
.10.1080/00102200008935814
19.
Ketelheun
,
A.
,
Olbricht
,
C.
,
Hahn
,
F.
, and
Janicka
,
J.
,
2009
, “
Premixed Generated Manifolds for the Computation of Technical Combustion Systems
,”
ASME
Paper No. GT2009-59940.10.1115/GT2009-59940
20.
Han
,
W.
,
Wang
,
H.
,
Kuenne
,
G.
,
Hawkes
,
E. R.
,
Chen
,
J. H.
,
Janicka
,
J.
, and
Hasse
,
C.
,
2019
, “
Large Eddy Simulation/Dynamic Thickened Flame Modeling of a High Karlovitz Number Turbulent Premixed Jet Flame
,”
Proc. Combust. Inst.
,
37
(
2
), pp.
2555
2563
.10.1016/j.proci.2018.06.228
21.
Ganter
,
S.
,
Heinrich
,
A.
,
Meier
,
T.
,
Kuenne
,
G.
,
Jainski
,
C.
,
Rißmann
,
M. C.
,
Dreizler
,
A.
, and
Janicka
,
J.
,
2017
, “
Numerical Analysis of Laminar Methane–Air Side-Wall-Quenching
,”
Combust. Flame
,
186
, pp.
299
310
.10.1016/j.combustflame.2017.08.017
22.
Ketelheun
,
A.
,
Kuenne
,
G.
, and
Janicka
,
J.
,
2013
, “
Heat Transfer Modeling in the Context of Large Eddy Simulation of Premixed Combustion With Tabulated Chemistry
,”
Flow Turbul. Combust.
,
91
(
4
), pp.
867
893
.10.1007/s10494-013-9492-6
23.
Palulli
,
R.
,
Brouzet
,
D.
,
Talei
,
M.
, and
Gordon
,
R. L.
,
2021
, “
A Comparative Study of Flame-Wall Interaction and Flame-Cooling Air Interaction
,”
Int. J. Heat Fluid Flow
,
92
, p.
108888
.10.1016/j.ijheatfluidflow.2021.108888
24.
Palulli
,
R.
,
Talei
,
M.
, and
Gordon
,
R. L.
,
2021
, “
Analysis of Near-Wall CO Due to Unsteady Flame-Cooling Air Interaction
,”
Flow Turbul. Combust.
,
107
(
2
), pp.
343
365
.10.1007/s10494-020-00233-y
25.
Hermann
,
J.
,
2017
, “
Laseroptische Untersuchung der Flamme-Kühlluft-Interaktion in einer effusionsgekühlten Brennkammer
,” Ph.D. thesis, TU Darmstadt, Darmstadt, Germany.
26.
Amerini
,
A.
,
Paccati
,
S.
,
Mazzei
,
L.
, and
Andreini
,
A.
,
2023
, “
Assessment of a Conjugate Heat Transfer Method on an Effusion Cooled Combustor Operated With a Swirl Stabilized Partially Premixed Flame
,”
ASME J. Turbomach.
,
145
(
8
), p.
081007
.10.1115/1.4056983
27.
Heeger
,
C.
,
2012
, Flashback Investigations in a Premixed Swirl Burner by High-Speed Laser Imaging (Fortschritt-Berichte VDI, Reihe 6, Energietechnik, No. 601),
VDI Verlag GmbH
,
Düsseldorf, Deutschland
.
28.
Goodwin
,
D. G.
,
Moffat
,
H. K.
,
Schoegl
,
I.
,
Speth
,
R. L.
, and
Weber
,
B. W.
,
2023
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes, Version 3.0.0
,” accessed Aug. 23, 2024, https://www.cantera.org
29.
Fiorina
,
B.
,
Mercier
,
R.
,
Kuenne
,
G.
,
Ketelheun
,
A.
,
Avdić
,
A.
,
Janicka
,
J.
, and
Geyer
,
D.
, et al.,
2015
, “
Challenging Modeling Strategies for LES of Non-Adiabatic Turbulent Stratified Combustion
,”
Combust. Flame
,
162
(
11
), pp.
4264
4282
.10.1016/j.combustflame.2015.07.036
30.
Fiorina
,
B.
,
Luu
,
T. P.
,
Dillon
,
S.
,
Mercier
,
R.
,
Wang
,
P.
,
Angelilli
,
L.
, and
Ciottoli
,
P. P.
, et al.,
2023
, “
A Joint Numerical Study of Multi-Regime Turbulent Combustion
,”
Appl. Energy Combust. Sci.
,
16
, p.
100221
.10.1016/j.jaecs.2023.100221
31.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
, and
Bowman
,
C. T.
, et al., “
GRI 3.0 Reaction Mechanism
,” accessed Aug. 23, 2024, http://www.me.berkeley.edu/gri_mech/
32.
Steinhausen
,
M.
,
Zirwes
,
T.
,
Ferraro
,
F.
,
Scholtissek
,
A.
,
Bockhorn
,
H.
, and
Hasse
,
C.
,
2023
, “
Flame-Vortex Interaction During Turbulent Side-Wall Quenching and Its Implications for Flamelet Manifolds
,”
Proc. Combust. Inst.
,
39
(
2
), pp.
2149
2158
.10.1016/j.proci.2022.09.026
33.
Luo
,
Y.
,
Steinhausen
,
M.
,
Kaddar
,
D.
,
Hasse
,
C.
, and
Ferraro
,
F.
,
2023
, “
Assessment of Flamelet Manifolds for Turbulent Flame-Wall Interactions in Large-Eddy Simulations
,”
Combust. Flame
,
255
, p.
112923
.10.1016/j.combustflame.2023.112923
34.
Fiorina
,
B.
,
Baron
,
R.
,
Gicquel
,
O.
,
Thevenin
,
D.
,
Carpentier
,
S.
, and
Darabiha
,
N.
,
2003
, “
Modelling Non-Adiabatic Partially Premixed Flames Using Flame-Prolongation of ILDM
,”
Combust. Theory Model.
,
7
(
3
), pp.
449
470
.10.1088/1364-7830/7/3/301
35.
Van Oijen
,
J.
,
Donini
,
A.
,
Bastiaans
,
R.
,
Ten Thije Boonkkamp
,
J.
, and
De Goey
,
L.
,
2016
, “
State-of-the-Art in Premixed Combustion Modeling Using Flamelet Generated Manifolds
,”
Prog. Energy Combust. Sci.
,
57
, pp.
30
74
.10.1016/j.pecs.2016.07.001
36.
Nicolai
,
H.
,
Kuenne
,
G.
,
Knappstein
,
R.
,
Schneider
,
H.
,
Becker
,
L.
,
Hasse
,
C.
,
Mare
,
F. D.
,
Dreizler
,
A.
, and
Janicka
,
J.
,
2020
, “
Large Eddy Simulation of a Laboratory-Scale Gas-Assisted Pulverized Coal Combustion Chamber Under Oxy-Fuel Atmospheres Using Tabulated Chemistry
,”
Fuel
,
272
, p.
117683
.10.1016/j.fuel.2020.117683
37.
Ihme
,
M.
, and
Pitsch
,
H.
,
2008
, “
Modeling of Radiation and Nitric Oxide Formation in Turbulent Nonpremixed Flames Using a Flamelet/Progress Variable Formulation
,”
Phys. Fluids
,
20
(
5
), p.
055110
.10.1063/1.2911047
38.
Ketelheun
,
A.
,
Olbricht
,
C.
,
Hahn
,
F.
, and
Janicka
,
J.
,
2011
, “
NO Prediction in Turbulent Flames Using LES/FGM With Additional Transport Equations
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2975
2982
.10.1016/j.proci.2010.07.021
39.
Mueller
,
M. E.
, and
Pitsch
,
H.
,
2012
, “
LES Model for Sooting Turbulent Nonpremixed Flames
,”
Combust. Flame
,
159
(
6
), pp.
2166
2180
.10.1016/j.combustflame.2012.02.001
40.
Kuenne
,
G.
,
Ketelheun
,
A.
, and
Janicka
,
J.
,
2011
, “
LES Modeling of Premixed Combustion Using a Thickened Flame Approach Coupled With FGM Tabulated Chemistry
,”
Combust. Flame
,
158
(
9
), pp.
1750
1767
.10.1016/j.combustflame.2011.01.005
41.
Charlette
,
F.
,
Meneveau
,
C.
, and
Veynante
,
D.
,
2002
, “
A Power-Law Flame Wrinkling Model for LES of Premixed Turbulent Combustion Part I: Non-Dynamic Formulation and Initial Tests
,”
Combust. Flame
,
131
(
1–2
), pp.
159
180
.10.1016/S0010-2180(02)00400-5
42.
Kuenne
,
G.
,
Seffrin
,
F.
,
Fuest
,
F.
,
Stahler
,
T.
,
Ketelheun
,
A.
,
Geyer
,
D.
,
Janicka
,
J.
, and
Dreizler
,
A.
,
2012
, “
Experimental and Numerical Analysis of a Lean Premixed Stratified Burner Using 1D Raman/Rayleigh Scattering and Large Eddy Simulation
,”
Combust. Flame
,
159
(
8
), pp.
2669
2689
.10.1016/j.combustflame.2012.02.010
43.
Durand
,
L.
, and
Polifke
,
W.
,
2007
, “
Implementation of the Thickened Flame Model for Large Eddy Simulation of Turbulent Premixed Combustion in a Commercial Solver
,”
ASME
Paper No. GT2007-28188.10.1115/GT2007-28188
44.
Vervisch
,
L.
,
Domingo
,
P.
,
Lodato
,
G.
, and
Veynante
,
D.
,
2010
, “
Scalar Energy Fluctuations in Large-Eddy Simulation of Turbulent Flames: Statistical Budgets and Mesh Quality Criterion
,”
Combust. Flame
,
157
(
4
), pp.
778
789
.10.1016/j.combustflame.2009.12.017
45.
Gruhlke
,
P.
,
Inanc
,
E.
,
Mercier
,
R.
,
Fiorina
,
B.
, and
Kempf
,
A. M.
,
2021
, “
A Simple Post-Processing Method to Correct Species Predictions in Artificially Thickened Turbulent Flames
,”
Proc. Combust. Inst.
,
38
(
2
), pp.
2977
2984
.10.1016/j.proci.2020.06.215
46.
Moureau
,
V.
,
Domingo
,
P.
, and
Vervisch
,
L.
,
2011
, “
From Large-Eddy Simulation to Direct Numerical Simulation of a Lean Premixed Swirl Flame: Filtered Laminar Flame-PDF Modeling
,”
Combust. Flame
,
158
(
7
), pp.
1340
1357
.10.1016/j.combustflame.2010.12.004
47.
Mercier
,
R.
,
Mehl
,
C.
,
Fiorina
,
B.
, and
Moureau
,
V.
,
2019
, “
Filtered Wrinkled Flamelets Model for Large-Eddy Simulation of Turbulent Premixed Combustion
,”
Combust. Flame
,
205
, pp.
93
108
.10.1016/j.combustflame.2019.03.025
48.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
.10.1063/1.168744
49.
Nicoud
,
F.
,
Toda
,
H. B.
,
Cabrit
,
O.
,
Bose
,
S.
, and
Lee
,
J.
,
2011
, “
Using Singular Values to Build a Subgrid-Scale Model for Large Eddy Simulations
,”
Phys. Fluids
,
23
(
8
), p.
085106
.10.1063/1.3623274
50.
Boudier
,
G.
,
Gicquel
,
L.
, and
Poinsot
,
T.
,
2008
, “
Effects of Mesh Resolution on Large Eddy Simulation of Reacting Flows in Complex Geometry Combustors
,”
Combust. Flame
,
155
(
1–2
), pp.
196
214
.10.1016/j.combustflame.2008.04.013
51.
Shahi
,
M.
,
Kok
,
J. B.
,
Roman Casado
,
J.
, and
Pozarlik
,
A. K.
,
2015
, “
Transient Heat Transfer Between a Turbulent Lean Partially Premixed Flame in Limit Cycle Oscillation and the Walls of a Can Type Combustor
,”
Appl. Therm. Eng.
,
81
, pp.
128
139
.10.1016/j.applthermaleng.2015.01.060
52.
Agostinelli
,
P.
,
Laera
,
D.
,
Boxx
,
I.
,
Gicquel
,
L.
, and
Poinsot
,
T.
,
2021
, “
Impact of Wall Heat Transfer in Large Eddy Simulation of Flame Dynamics in a Swirled Combustion Chamber
,”
Combust. Flame
,
234
, p.
111728
.10.1016/j.combustflame.2021.111728
53.
Karpowski
,
T. J. P.
,
Ferraro
,
F.
,
Steinhausen
,
M.
,
Popp
,
S.
,
Arndt
,
C. M.
,
Kraus
,
C.
,
Bockhorn
,
H.
,
Meier
,
W.
, and
Hasse
,
C.
,
2022
, “
Numerical Investigation of the Local Thermo-Chemical State in a Thermo-Acoustically Unstable Dual Swirl Gas Turbine Model Combustor
,”
ASME
Paper No. GT2022-83810.10.1115/GT2022-83810
54.
Arndt
,
C. M.
,
Nau
,
P.
, and
Meier
,
W.
,
2021
, “
Characterization of Wall Temperature Distributions in a Gas Turbine Model Combustor Measured by 2D Phosphor Thermometry
,”
Proc. Combust. Inst.
,
38
(
1
), pp.
1867
1875
.10.1016/j.proci.2020.06.088
You do not currently have access to this content.