Abstract

Minimizing global warming is a major task of todays' society. For air transport, sustainable aviation fuels (SAF) produced from renewable sources are a promising key solution. While electric flight is intriguing for short distances, SAF are required for mid- and long-distance flights and in addition, enable fuel design strategies to minimize environmental effects. The qualification and approval for SAF are standardized in the ASTM D4054, which include fuel properties as an essential part. Among others, lean blow-out (LBO) limits are a key performance parameter. The experimental determination of LBO is very time-consuming and cost-effective. The LBO of a specified engine is highly dependent on the fuel properties affecting evaporation, mixing, and ignitability. Therefore, prediction tools are desired to identify early promising SAF for decreasing the certification cost. Due to the correlation between LBO and derived cetane numbers (DCN), a tool for the prediction of the DCN is presented in this study. The DCN model uses chemical kinetic ignition delay time (IDT), simulated in a constant volume combustion chamber based on the ASTM D6890 standard, and seven representative physical properties of a fuel. A high agreement of the predicted DCN to the literature DCN with root-mean-square errors of 4.7 and correlation coefficients of 0.95 was found.

References

1.
Wang
,
M.
,
Dewil
,
R.
,
Maniatis
,
K.
,
Wheeldon
,
J.
,
Tan
,
T.
,
Baeyens
,
J.
, and
Fang
,
Y.
,
2019
, “
Biomass-Derived Aviation Fuels: Challenges and Perspective
,”
Prog. Energy Combust. Sci.
,
74
, pp.
31
49
.10.1016/j.pecs.2019.04.004
2.
Drünert
,
S.
,
Neuling
,
U.
,
Zitscher
,
T.
, and
Kaltschmitt
,
M.
,
2020
, “
Power-to-Liquid Fuels for Aviation – Processes, Resources and Supply Potential Under German Conditions
,”
Appl. Energy
,
277
, p.
115578
.10.1016/j.apenergy.2020.115578
3.
Kohse-Höinghaus
,
K.
,
2021
, “
Combustion in the Future: The Importance of Chemistry
,”
Proc. Combust. Inst.
,
38
(
1
), pp.
1
56
.10.1016/j.proci.2020.06.375
4.
ASTM D1655
,
2019
, “
Specification for Aviation Turbine Fuels
,”
ASTM
,
West Conshohocken, PA
, Standard No.
ASTM D1655-19
.10.1520/D1655-19
5.
Kramer
,
S.
,
Andac
,
G.
,
Heyne
,
J.
,
Ellsworth
,
J.
,
Herzig
,
P.
, and
Lewis
,
K. C.
,
2022
, “
Perspectives on Fully Synthesized Sustainable Aviation Fuels: Direction and Opportunities
,”
Front. Energy Res.
,
9
(
782823
), p.
782823
.10.3389/fenrg.2021.782823
6.
International Air Transport Association (IATA),
2023, “
Fact Sheet: EU and U.S. Policy Approaches to Advance SAF Production
,” accessed Oct. 16, 2023, https://www.iata.org/contentassets/d13875e9ed784f75bac90f000760e998/fact-sheet---us-and-eu-saf-policies.pdf
7.
ASTM D4054
,
2019
, “
Practice for Evaluation of New Aviation Turbine Fuels and Fuel Additives
,”
ASTM
,
West Conshohocken, PA
, Standard No.
ASTM D4054-19
.10.1520/D4054-19
8.
Rumizen
,
M. A.
,
2021
, “
Qualification of Alternative Jet Fuels
,”
Front. Energy Res.
,
9
, p.
760713
.10.3389/fenrg.2021.760713
9.
Heyne
,
J.
,
Rauch
,
B.
,
Le Clercq
,
P.
, and
Colket
,
M.
,
2021
, “
Sustainable Aviation Fuel Prescreening Tools and Procedures
,”
Fuel
,
290
, p.
120004
.10.1016/j.fuel.2020.120004
10.
Won
,
S. H.
,
Rock
,
N.
,
Lim
,
S. J.
,
Nates
,
S.
,
Carpenter
,
D.
,
Emerson
,
B.
,
Lieuwen
,
T.
,
Edwards
,
T.
, and
Dryer
,
F. L.
,
2019
, “
Preferential Vaporization Impacts on Lean Blow-Out of Liquid Fueled Combustors
,”
Combust. Flame
,
205
, pp.
295
304
.10.1016/j.combustflame.2019.04.008
11.
Rock
,
N.
,
Chterev
,
I.
,
Emerson
,
B.
,
Won
,
S. H.
,
Seitzman
,
J.
, and
Lieuwen
,
T.
,
2019
, “
Liquid Fuel Property Effects on Lean Blowout in an Aircraft Relevant Combustor
,”
ASME J. Eng. Gas Turbines Power
,
141
(
7
), p.
071005
.10.1115/1.4042010
12.
Huang
,
M.
,
Gowdagiri
,
S.
,
Cesari
,
X. M.
, and
Oehlschlaeger
,
M. A.
,
2016
, “
Diesel Engine CFD Simulations: Influence of Fuel Variability on Ignition Delay
,”
Fuel
,
181
, pp.
170
177
.10.1016/j.fuel.2016.04.137
13.
Abdul Jameel
,
A. G.
,
van Oudenhoven
,
V. C.
,
Naser
,
N.
,
Emwas
,
A.-H.
,
Gao
,
X.
, and
Sarathy
,
S. M.
,
2021
, “
Predicting Ignition Quality of Oxygenated Fuels Using Artificial Neural Networks
,”
SAE Int. J. Fuels Lubr.
,
14
(
2
), pp.
57
86
.10.4271/04-14-02-0005
14.
Peiffer
,
E. E.
,
Heyne
,
J. S.
, and
Colket
,
M.
,
2019
, “
Sustainable Aviation Fuels Approval Streamlining: Auxiliary Power Unit Lean Blowout Testing
,”
AIAA J.
,
57
(
11
), pp.
4854
4862
.10.2514/1.J058348
15.
Wang
,
Y.
,
Cao
,
Y.
,
Wei
,
W.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2019
, “
A New Method of Estimating Derived Cetane Number for Hydrocarbon Fuels
,”
Fuel
,
241
, pp.
319
326
.10.1016/j.fuel.2018.12.027
16.
Boehm
,
R. C.
,
Colborn
,
J. G.
, and
Heyne
,
J. S.
,
2021
, “
Comparing Alternative Jet Fuel Dependencies Between Combustors of Different Size and Mixing Approaches
,”
Front. Energy Res.
,
9
, p.
701901
.10.3389/fenrg.2021.701901
17.
Kim
,
Y.
,
Cho
,
J.
,
Naser
,
N.
,
Kumar
,
S.
,
Jeong
,
K.
,
McCormick
,
R. L.
,
St. John
,
P. C.
, and
Kim
,
S.
,
2023
, “
Physics-Informed Graph Neural Networks for Predicting Cetane Number With Systematic Data Quality Analysis
,”
Proc. Combust. Inst.
,
39
(
4
), pp.
4969
4978
.10.1016/j.proci.2022.09.059
18.
ASTM D613-A
,
2018
, “
Standard Test Method for Cetane Number of Diesel Fuel Oil
,”
ASTM
,
West Conshohocken, PA
, Standard No. D0613-18A.10.1520/D0613-18A
19.
ASTM D6890
,
2021
, “
Standard Test Method for Determination of Ignition Delay and Derived Cetane Number (DCN) of Diesel Fuel Oils by Combustion in a Constant Volume Chamber
,”
ASTM
,
West Conshohocken, PA
, Standard No.
D6890-21
.10.1520/D6890-21
20.
ASTM D8183
,
2022
, “
Standard Test Method for Determination of Indicated Cetane Number (ICN) of Diesel Fuel Oils Using a Constant Volume Combustion Chamber Reference Fuels Calibration Method
,”
ASTM
,
West Conshohocken, PA
, Standard No.
D8183-22
.10.1520/D8183-22
21.
Al Ibrahim
,
E.
, and
Farooq
,
A.
,
2021
, “
Prediction of the Derived Cetane Number and Carbon/Hydrogen Ratio From Infrared Spectroscopic Data
,”
Energy Fuels
,
35
(
9
), pp.
8141
8152
.10.1021/acs.energyfuels.0c03899
22.
Abdul Jameel
,
A. G.
,
Naser
,
N.
,
Emwas
,
A.-H.
,
Dooley
,
S.
, and
Sarathy
,
S. M.
,
2016
, “
Predicting Fuel Ignition Quality Using 1 H NMR Spectroscopy and Multiple Linear Regression
,”
Energy Fuels
,
30
(
11
), pp.
9819
9835
.10.1021/acs.energyfuels.6b01690
23.
Dahmen
,
M.
, and
Marquardt
,
W.
,
2015
, “
A Novel Group Contribution Method for the Prediction of the Derived Cetane Number of Oxygenated Hydrocarbons
,”
Energy Fuels
,
29
(
9
), pp.
5781
5801
.10.1021/acs.energyfuels.5b01032
24.
Hall
,
C.
,
Rauch
,
B.
,
Bauder
,
U.
,
Le Clercq
,
P.
, and
Aigner
,
M.
,
2021
, “
Predictive Capability Assessment of Probabilistic Machine Learning Models for Density Prediction of Conventional and Synthetic Jet Fuels
,”
Energy Fuels
,
35
(
3
), pp.
2520
2530
.10.1021/acs.energyfuels.0c03779
25.
Goodwin
,
D. G.
,
Moffat
,
H. K.
,
Schoegl
,
I.
,
Speth
,
R. L.
, and
Weber
,
B. W.
,
2022
, “
An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” Version 2.6.0, accessed Dec. 16, 2022, https://www.cantera.org
26.
Ranzi
,
E.
,
Frassoldati
,
A.
,
Stagni
,
A.
,
Pelucchi
,
M.
,
Cuoci
,
A.
, and
Faravelli
,
T.
,
2014
, “
Reduced Kinetic Schemes of Complex Reaction Systems: Fossil and Biomass-Derived Transportation Fuels
,”
Int. J. Chem. Kinet.
,
46
(
9
), pp.
512
542
.10.1002/kin.20867
27.
Warnatz
,
J.
,
Maas
,
U.
, and
Dibble
,
R. W.
,
2006
,
Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation
, 4th ed.,
Springer
,
Berlin Heidelberg and Berlin, New York
.
28.
Duan
,
Y.
,
Liu
,
W.
,
Huang
,
Z.
, and
Han
,
D.
,
2021
, “
An Experimental Study on Spray Auto-Ignition of RP-3 Jet Fuel and Its Surrogates
,”
Front. Energy
,
15
(
2
), pp.
396
404
.10.1007/s11708-020-0715-y
29.
Dooley
,
S.
,
Won
,
S. H.
,
Chaos
,
M.
,
Heyne
,
J.
,
Ju
,
Y.
,
Dryer
,
F. L.
,
Kumar
,
K.
, et al.,
2010
, “
A Jet Fuel Surrogate Formulated by Real Fuel Properties
,”
Combust. Flame
,
157
(
12
), pp.
2333
2339
.10.1016/j.combustflame.2010.07.001
30.
Dooley
,
S.
,
Won
,
S. H.
,
Jahangirian
,
S.
,
Ju
,
Y.
,
Dryer
,
F. L.
,
Wang
,
H.
, and
Oehlschlaeger
,
M. A.
,
2012
, “
The Combustion Kinetics of a Synthetic Paraffinic Jet Aviation Fuel and a Fundamentally Formulated, Experimentally Validated Surrogate Fuel
,”
Combust. Flame
,
159
(
10
), pp.
3014
3020
.10.1016/j.combustflame.2012.04.010
31.
Verein Deutscher Ingenieure, VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen
,
2013
,
VDI-Wärmeatlas
,
11
., bearbeitete und erweitere Auflage,
Springer
,
Berlin, Heidelberg
.
32.
ISO 4010 1977
,
1977
, “
Diesel Engines — Calibrating Nozzle, Delay Pintle Type
,”
ISO
,
Geneva, Switzerland
, Report No.
ICS:43.180
.https://www.iso.org/standard/9689.html
33.
Bell
,
D.
,
Heyne
,
J. S.
,
Won
,
S. H.
,
Dryer
,
F.
,
Haas
,
F. M.
, and
Dooley
,
S.
,
2017
, “
On the Development of General Surrogate Composition Calculations for Chemical and Physical Properties
,”
AIAA
Paper No. 2017-0609. 10.2514/6.2017-0609
34.
Reid
,
R. C.
,
Prausnitz
,
J. M.
, and
Poling
,
B. E.
,
1987
,
The Properties of Gases and Liquids
, 4th ed.,
McGraw-Hill
,
New York
.
35.
Hall
,
C.
,
Creton
,
B.
,
Rauch
,
B.
,
Bauder
,
U.
, and
Aigner
,
M.
,
2022
, “
Probabilistic Mean Quantitative Structure–Property Relationship Modeling of Jet Fuel Properties
,”
Energy Fuels
,
36
(
1
), pp.
463
479
.10.1021/acs.energyfuels.1c03334
36.
DIPPR® ProDatabase
,
2018
, “
Version 12.3.0: Information and Data Evaluation Manager for the Design Institute for Physical Properties
,” DIPPR, New York, accessed Oct. 13, 2023, https://www.aiche.org/dippr
37.
Yanowitz
,
J.
,
Ratcliff
,
M. A.
,
McCormick
,
R. L.
,
Taylor
,
J. D.
, and
Murphy
,
M. J.
,
2017
, “
Compendium of Experimental Cetane Numbers
,”
National Renewable Energy Laboratory
, Report No.
NREL/TP-5400-67585
.10.2172/1345058
38.
Abel
,
R. C.
,
Luecke
,
J.
,
Ratcliff
,
M. A.
, and
und Zigler
,
B. T.
,
2020
, “
Comparing Cetane Number Measurement Methods
,” ASME Paper No. ICEF2020-3017. 10.1115/ICEF2020-3017
39.
Heyne
,
J. S.
,
Boehman
,
A. L.
, and
Kirby
,
S.
,
2009
, “
Autoignition Studies of Trans - and cis -Decalin in an Ignition Quality Tester (IQT) and the Development of a High Thermal Stability Unifuel/Single Battlefield Fuel
,”
Energy Fuels
,
23
(
12
), pp.
5879
5885
.10.1021/ef900715m
40.
Naser
,
N.
,
Sarathy
,
S. M.
, and
Chung
,
S. H.
,
2018
, “
Ignition Delay Time Sensitivity in Ignition Quality Tester (IQT) and Its Relation to Octane Sensitivity
,”
Fuel
,
233
, pp.
412
419
.10.1016/j.fuel.2018.05.131
41.
Virtanen
,
P.
,
Gommers
,
R.
,
Oliphant
,
T. E.
,
Haberland
,
M.
,
Reddy
,
T.
,
Cournapeau
,
D.
,
Burovski
,
E.
, et al.,
2020
, “
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python
,”
Nat. Methods
,
17
(
3
), pp.
261
272
.10.1038/s41592-019-0686-2
42.
Wang
,
M.
,
Kukkadapu
,
G.
,
Fang
,
R.
,
Pitz
,
W. J.
, and
Sung
,
C.-J.
,
2021
, “
Autoignition Study of Iso-Cetane/Tetralin Blends at Low Temperature
,”
Combust. Flame
,
228
, pp.
415
429
.10.1016/j.combustflame.2021.02.018
43.
Tekawade
,
A.
, and
Oehlschlaeger
,
M. A.
,
2016
, “
An Experimental Study of the Spray Ignition of Alkanes
,”
Fuel
,
185
, pp.
381
393
.10.1016/j.fuel.2016.07.108
44.
Vasu
,
S. S.
,
Davidson
,
D. F.
,
Hong
,
Z.
,
Vasudevan
,
V.
, and
Hanson
,
R.
,
2009
, “
n-Dodecane Oxidation at High-Pressures: Measurements of Ignition Delay Times and OH Concentration Time-Histories
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
173
180
.10.1016/j.proci.2008.05.006
45.
Tekawade
,
A.
,
Xie
,
T.
, and
Oehlschlaeger
,
M. A.
,
2017
, “
Comparative Study of the Ignition of 1-Decene, Trans -5-Decene, and n -Decane: Constant-Volume Spray and Shock-Tube Experiments
,”
Energy Fuels
,
31
(
6
), pp.
6493
6500
.10.1021/acs.energyfuels.7b00430
46.
Shao
,
J.
,
Choudhary
,
R.
,
Peng
,
Y.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2019
, “
A Shock Tube Study of n-Heptane, Iso-Octane, n-Dodecane and Iso-Octane/n-Dodecane Blends Oxidation at Elevated Pressures and Intermediate Temperatures
,”
Fuel
,
243
, pp.
541
553
.10.1016/j.fuel.2019.01.152
47.
Herzler
,
J.
,
Fikri
,
M.
,
Hitzbleck
,
K.
,
Starke
,
R.
,
Schulz
,
C.
,
Roth
,
P.
, and
Kalghatgi
,
G. T.
,
2007
, “
Shock-Tube Study of the Autoignition of n-Heptane/Toluene/Air Mixtures at Intermediate Temperatures and High Pressures
,”
Combust. Flame
,
149
(
1–2
), pp.
25
31
.10.1016/j.combustflame.2006.12.015
You do not currently have access to this content.