Abstract

The “Shockless Explosion Combustion” (SEC) concept for gas turbine combustors, introduced in 2014, approximates constant volume combustion (CVC) by harnessing acoustic confinement of auto-igniting gas packets. The resulting pressure waves simultaneously transmit combustion energy to a turbine plenum and facilitate the combustor's recharging against an average pressure gain. Challenges in actualizing an SEC-driven gas turbine include (i) the creation of charge stratifications for nearly homogeneous auto-ignition, (ii) protecting the turbocomponents from combustion-induced pressure fluctuations, (iii) providing evidence that efficiency gains comparable to those of CVC over deflagrative combustion can be realized, and (iv) designing an effective one-way intake valve. This work addresses challenges (i)–(iii) utilizing computational engine models incorporating a quasi-one-dimensional combustor, zero- and two-dimensional (2D) compressor and turbine plena, and quasi-stationary turbocomponents. Two SEC operational modes are identified which fire at roughly one and two times the combustors' acoustic frequencies. Results for SEC-driven gas turbines with compressor pressure ratios of 6:1 and 20:1 reveal 1.5-fold mean pressure gains across the combustors. Assuming ideally efficient compressors and turbines, efficiency gains over engines with deflagration-based combustors of 30% and 18% are realized, respectively. With absolute values of 52% and 66%, the obtained efficiencies are close to the theoretical Humphrey cycle efficiencies of 54% and 65% for the mentioned precompression ratios. Detailed thermodynamic cycle analyses for individual gas parcels suggest that there is room for further efficiency gains through optimized plenum and combustor designs.

References

1.
Heiser
,
W. H.
, and
Pratt
,
D. T.
,
2002
, “
Thermodynamic Cycle Analysis of Pulse Detonation Engines
,”
J. Propul. Power
,
18
(
1
), pp.
68
76
.10.2514/2.5899
2.
Roy
,
G.
,
Frolov
,
S.
,
Borisov
,
A.
, and
Netzer
,
D.
,
2004
, “
Pulse Detonation Propulsion: Challenges, Current Status, and Future Perspective
,”
Prog. Energy Combust. Sci.
,
30
(
6
), pp.
545
672
.10.1016/j.pecs.2004.05.001
3.
Wolański
,
P.
,
2013
, “
Detonative Propulsion
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
125
158
.10.1016/j.proci.2012.10.005
4.
Lu
,
F.
,
Braun
,
E.
,
Massa
,
E.
, and
Wilson
,
D.
,
2011
, “
Rotating Detonation Wave Propulsion: Experimental Challenges, Modeling, and Engine Concepts (Invited)
,”
AIAA
Paper No.
2011
6043
.10.2514/6.2011-6043
5.
Lu
,
F.
, and
Braun
,
E.
,
2014
, “
Rotating Detonation Wave Propulsion: Experimental Challenges, Modeling, and Engine Concepts (Invited)
,”
J. Propul. Power
,
30
(
5
), pp.
1125
1142
.10.2514/1.B34802
6.
Anand
,
V.
, and
Gutmark
,
E.
,
2019
, “
Rotating Detonation Combustors and Their Similarities to Rocket Instabilities
,”
Prog. Energy Combust. Sci.
,
73
, pp.
182
234
.10.1016/j.pecs.2019.04.001
7.
Bobusch
,
B.
,
Berndt
,
P.
,
Paschereit
,
O. C.
, and
Klein
,
R.
,
2014
, “
Shockless Explosion Combustion: An Innovative Way of Efficient Constant Volume Combustion in Gas Turbines
,”
Combust. Sci. Technol.
,
186
(
10–11
), pp.
1680
1689
.10.1080/00102202.2014.935624
8.
Nalim
,
M. R.
,
2002
, “
Thermodynamic Limits of Work and Pressure Gain in Combustion and Evaporation Processes
,”
J. Propul. Power
,
18
(
6
), pp.
1176
1182
.10.2514/2.6076
9.
Stathopoulos
,
P.
,
2018
, “
Comprehensive Thermodynamic Analysis of the Humphrey Cycle for Gas Turbines With Pressure Gain Combustion
,”
Energies
,
11
(
12
), p.
3521
.10.3390/en11123521
10.
Caresana
,
F.
,
Pelagalli
,
L.
,
Comodi
,
G.
, and
Renzi
,
M.
,
2014
, “
Microturbogas Cogeneration Systems for Distributed Generation: Effects of Ambient Temperature on Global Performance and Components' Behavior
,”
Appl. Energy
,
124
, pp.
17
27
.10.1016/j.apenergy.2014.02.075
11.
Haugwitz
,
S.
,
2002
, “
Modelling of Microturbine Systems
,” Master's thesis,
Lund Institute of Technology
,
Lund, Sweden
.
12.
Berndt
,
P.
, and
Klein
,
R.
,
2017
, “
Modeling the Kinetics of the Shockless Explosion Combustion
,”
Combust. Flame
,
175
, pp.
16
26
.10.1016/j.combustflame.2016.06.029
13.
Schäpel
,
J.-S.
,
King
,
R.
,
Yüzel
,
F.
,
Völzke
,
F.
,
Paschereit
,
C. O.
, and
Klein
,
R.
,
2018
, “
Fuel Injection Control for a Valve Array in a Shockless Explosion Combustor
,”
ASME
Paper No. GT2018-75295.10.1115/GT2018-75295
14.
Berkenbosch
,
A.
,
Kaasschieter
,
E.
, and
Klein
,
R.
,
1998
, “
Detonation Capturing for Stiff Combustion Chemistry
,”
Combust. Theory Modell.
,
2
(
3
), pp.
313
348
.10.1088/1364-7830/2/3/006
15.
Cai
,
L.
, and
Pitsch
,
H.
,
2015
, “
Tailoring Fuels for a Shockless Explosion Combustor
,”
Active Flow and Combustion Control 2014
(Vol. 127 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design), Vol.
127
,
R.
King
, ed.,
Springer
,
Cham
.
16.
Djordjevic
,
N.
,
Rekus
,
M.
,
Vinkeloe
,
J.
, and
Zander
,
L.
,
2019
, “
Shock Tube and Kinetic Study on the Effects of CO2 on Dimethyl Ether Autoignition at High Pressures
,”
Energy Fuels
,
33
(
10
), pp.
10197
10208
.10.1021/acs.energyfuels.9b01575
17.
Vinkeloe
,
J.
,
Zander
,
L.
,
Szeponik
,
M.
, and
Djordjevic
,
N.
,
2020
, “
Tailoring the Temperature Sensitivity of Ignition Delay Times in Hot Spots Using Fuel Blends of Dimethyl Ether, Methane and Hydrogen
,”
Energy Fuels
,
34
(
2
), pp.
2246
2259
.10.1021/acs.energyfuels.9b02619
18.
Mohamed
,
A. A. E.-S.
,
Monaghan
,
R. F. D.
,
Bourque
,
G.
, and
Curran
,
H.
,
2023
, “
Ignition Delay Times of c1–c7 Natural Gas Blends in the Intermediate and High Temperature Regimes: Experiment and Correlation
,”
Fuel
,
354
, p.
129299
.10.1016/j.fuel.2023.129299
19.
Berndt
,
P.
,
Klein
,
R.
, and
Paschereit
,
C. O.
,
2016
, “
A Kinetics Model for the Shockless Explosion Combustion
,”
ASME
Paper No. GT2016-57678.10.1115/GT2016-57678
20.
Berndt
,
P.
,
2016
, “
Mathematical Modeling of the Shockless Explosion Combustion
,” Ph.D. thesis,
Freie Universität Berlin
,
Berlin, Germany
.
21.
Einfeldt
,
B.
,
1988
, “
On Godunov-Type Methods for Gas Dynamics
,”
SIAM J. Numer. Anal.
,
25
(
2
), pp.
294
318
.10.1137/0725021
22.
Stathopoulos
,
P.
,
2020
, “
An Alternative Architecture of the Humphrey Cycle and the Effect of Fuel Type on Its Efficiency
,”
Energy Sci. Eng.
,
8
(
10
), pp.
3702
3716
.10.1002/ese3.776
23.
Hoops
,
H.
, and
Saidi
,
K.
,
2023
, “
Gas Turbine, Gas Engine, Combined Heat and Power, Steam Generation, Hot Water Generation
,” accessed Sept. 2, 2024, https://www.man-es.com/docs/default-source/energy-storage/orchestrate-heat-and-power/man-es_mgt_technical_paper_preview.pdf?sfvrsn=51cf6dd6_6
24.
Nadolski
,
M.
,
Haghdoost
,
M. R.
,
Gray
,
J. A. T.
,
Edgington-Mitchell
,
D.
,
Oberleithner
,
K.
, and
Klein
,
R.
,
2019
, “
Validation of Under-Resolved Numerical Simulations of the PDC Exhaust Flow Based on High Speed Schlieren
,” R. King, ed.,
Active Flow and Combustion Control 2018 (Notes on Numerical Fluid Mechanics and Multidisciplinary Design)
, Vol.
141
,
Springer
, Cham, pp.
237
253
.10.1007/978-3-319-98177-2_15
25.
Rezay Haghdoost
,
M.
,
Edgington-Mitchell
,
D.
,
Nadolski
,
M.
,
Klein
,
R.
, and
Oberleithner
,
K.
,
2020
, “
Dynamic Evolution of a Transient Supersonic Trailing Jet Induced by a Strong Incident Shock Wave
,”
Phys. Rev. Fluids
,
5
(
7
), p.
073401
.10.1103/PhysRevFluids.5.073401
26.
Rezay Haghdoost
,
M.
,
Thethy
,
B.
,
Nadolski
,
M.
,
Seo
,
B.
,
Paschereit
,
C.
,
Klein
,
R.
,
Edgington-Mitchell
,
D.
, and
Oberleithner
,
K.
,
2022
, “
Numerical and Experimental Evaluation of Shock Dividers
,”
Shock Waves
,
32
(
2
), pp.
195
211
.10.1007/s00193-021-01062-2
27.
Thethy
,
B. S.
,
Rezay Haghdoost
,
M.
,
Kirby
,
R.
,
Seo
,
B.
,
Nadolski
,
M.
,
Zenker
,
C.
,
Oevermann
,
M.
,
Klein
,
R.
,
Oberleithner
,
K.
, and
Edgington-Mitchell
,
D.
,
2022
, “
Diffraction of Shock Waves Through a Non-Quiescent Medium
,”
J. Fluid Mech.
,
944
, p.
A39
.10.1017/jfm.2022.484
28.
Putnam
,
A. A.
,
Belles
,
F. E.
, and
Kentfield
,
J. A. C.
,
1986
, “
Pulse Combustion
,”
Prog. Eng. Combust. Sci.
,
12
(
1
), pp.
43
79
.10.1016/0360-1285(86)90013-4
29.
Mair
,
M.
,
Bacic
,
M.
, and
Ireland
,
P.
,
2019
, “
On Dynamics of Acoustically Driven Bistable Fluidic Valves
,”
ASME J. Fluids Eng.
,
141
(
6
), p.
061202
.10.1115/1.4041890
30.
Nguyen
,
Q. M.
,
Abouezzi
,
J.
, and
Ristroph
,
L.
,
2021
, “
Early Turbulence and Pulsatile Flows Enhance Diodicity of Tesla's Macrofluidic Valve
,”
Nat. Commun.
,
12
, p.
2884
.10.1038/s41467-021-23009-y
31.
Tornow
,
G., Klein, R.
,
2019
, “
A 1D Multi-Tube Code for the Shockless Explosion Combustion
,” R. King, ed.,
Active Flow and Combustion Control 2018 (Notes on Numerical Fluid Mechanics and Multidisciplinary Design)
, Vol.
141
,
Springer
, Cham, pp.
321
335
.10.1007/978-3-319-98177-2_20
32.
Tornow, G.
,
2021
, “
Quasi One-Dimensional Modelling of Turbulence and Interaction of Combustion Chambers in a Shockless Explosion Combustor
,” Ph.D. thesis,
Freie Universität Berlin
,
Berlin
.
33.
Kassoy
,
D. R.
,
1975
, “
Mathematical Models of Explosion Phenomena
,”
Q. J. Mech. Appl. Math.
,
28
(
1
), pp.
63
74
.10.1093/qjmam/28.1.63
34.
Strang
,
G.
,
1968
, “
On the Construction and Comparison of Difference Schemes
,”
SIAM J. Num. Anal.
,
5
(
3
), pp.
506
517
.10.1137/0705041
35.
Bourlioux
,
A.
, and
Majda
,
A. J.
,
1992
, “
Theoretical and Numerical Structure for Unstable Two-Dimensional Detonations
,”
Combust. Flame
,
90
(
3–4
), pp.
211
229
.10.1016/0010-2180(92)90084-3
36.
LeVeque
,
R. J.
,
1990
,
Numerical Methods for Conservation Laws
,
Birkhäuser
,
Basel, Switzerland
.
37.
Harten
,
A.
,
Lax
,
P. D.
, and
van Leer
,
B.
,
1983
, “
On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws
,”
SIAM Rev.
,
25
(
1
), pp.
35
61
.10.1137/1025002
38.
Toro
,
E.
,
1992
, “
The Weighted Average Flux Method Applied to the Euler Equations
,”
Philos. Trans. R. Soc. Lond. A
,
A341
, pp.
499
530
.10.1098/rsta.1992.0113
39.
Roe
,
P. L.
,
1981
, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
,”
J. Comput. Phys.
,
43
(
2
), pp.
357
372
.10.1016/0021-9991(81)90128-5
You do not currently have access to this content.