Abstract

The Tesla compressor is an innovative technology that offers a unique approach to fluid compression. Unlike traditional compressors that use rotating blades, bladeless compressors utilize closely spaced disks to create compression. The purpose of this article is to design a prototype Tesla air compressor with optimal design parameters and investigate the performance and loss characteristics based on numerical analysis and experimental demonstration. The prototype model has been numerically investigated at different rotational speeds, and the results have been compared with those obtained in experiments. Computational fluid dynamics (CFD) simulations indicate that the rotor-only efficiency is greater than 90% at very low mass flowrates, while the coupling of the rotor and volute leads to a total-to-static efficiency of approximately 58% (without losses) at 14 g/s. At a nominal mass flow of 4 g/s, the highest total-to-static pressure ratio would be around 1.27. Experimental results indicate leakage losses greatly reduce net mass flow, while pressure ratio values are in good agreement with CFD predictions. During this experiment, a maximum isentropic efficiency of 32.4% is measured. Indeed, the prototype included ventilation and leakage losses, which were not modeled in the CFD analysis. It is remarkable that the compressor does not show any unstable behavior down to zero mass flow (closed valve test), where the CFD and the experiment show consistent pressure ratios. An estimation of the losses from end-wall friction and leakage flow is carried out using numerical simulations at different exit radial clearances. Increasing radial clearance results in an increase in leakage and end-wall power loss, the latter being driven mainly by the axial clearance with the casing, which remained unchanged. To minimize leakage, a Teflon ring has been used as a first measure. Numerical calculations have indicated that the leakage rate is approximately 6 g/s at design speed. A brush seal-type solution can improve the sealing system to reduce leakage.

References

1.
Rice
,
W.
,
1963
, “
An Analytical and Experimental Investigation of Multiple Disk Pumps and Compressors
,”
ASME J. Eng. Power
,
85
(
3
), pp.
191
198
.10.1115/1.3675253
2.
Tiwari
,
R. N.
,
Reggio
,
F.
,
Renuke
,
A.
,
Pascenti
,
M.
,
Traverso
,
A.
, and
Ferrari
,
M. L.
,
2022
, “
Performance Investigation of a Bladeless Air Compressor
,”
ASME J. Eng. Gas Turbines Power
,
144
(
9
), p.
091008
.10.1115/1.4054945
3.
Rice
,
W.
,
2003
, “
Tesla Turbomachinery
,”
Handbook of Turbomachinery
,
E.
Logan
and
R.
Ray
, eds.,
Marcel Dekker
,
New York
, Chap.
14
.
4.
Miller
,
G. E.
,
Etter
,
B. D.
, and
Dorsi
,
J. M.
,
1990
, “
A Multiple Disk Centrifugal Pump as a Blood Flow Device
,”
IEEE Trans. Biomed. Eng.
,
37
(
2
), pp.
157
163
.10.1109/10.46255
5.
Tiwari
,
R. N.
,
Niccolini Marmont
,
C. A.
,
Reggio
,
F.
,
Silvestri
,
P.
,
Traverso
,
A.
, and
Ferrari
,
M. L.
,
2023
, “
Acoustic Signature Analysis of a Bladeless Blower
,”
Appl. Acoust.
,
208
(
6
), p.
109382
.10.1016/j.apacoust.2023.109382
6.
Miller
,
G. E.
, and
Fink
,
R.
,
1999
, “
Analysis of Optimal Design Configurations for a Multiple Disk Centrifugal Blood Pump
,”
Int. Soc. Artif. Organs
,
23
(
6
), pp.
559
565
.10.1046/j.1525-1594.1999.06403.x
7.
Discflo Disc Pump
, 2024, “
Web Discflo Disc Pump
,” ESI Technologies Group, Lakeside Park, Cwmbran, UK, accessed Oct. 10, 2024, https://esitechgroup.com/products/pumps-vacuum/discflo-disc-pump/
8.
Tesla
,
N.
,
1913
, “
Turbine
,” U.S. Patent No. 1,061,206.
9.
Tesla
,
N.
,
1913
, “
Fluid Propulsion
,” U.S. Patent No. 1,061,142.
10.
Talluri
,
L.
,
Fiaschi
,
D.
,
Neri
,
G.
, and
Ciappi
,
L.
,
2018
, “
Design and Optimization of a Tesla Turbine for ORC Applications
,”
Appl. Energy
,
226
, pp.
300
319
.10.1016/j.apenergy.2018.05.057
11.
Renuke
,
A.
,
Vannoni
,
A.
,
Pascenti
,
M.
, and
Traverso
,
A.
,
2019
, “
Experimental and Numerical Investigation of Small-Scale Tesla Turbines
,”
ASME J. Eng. Gas Turbines Power
,
141
(
12
), p.
121011
.10.1115/1.4044999
12.
Zhao
,
D.
,
Ji
,
C.
,
Teo
,
C.
, and
Li
,
S.
,
2014
, “
Performance of Small-Scale Bladeless Electromagnetic Energy Harvesters Driven by Water or Air
,”
Energy
,
74
, pp.
99
108
.10.1016/j.energy.2014.04.004
13.
Magistri
,
L.
,
Costamagna
,
P.
,
Massardo
,
A. F.
,
Rodgers
,
C.
, and
McDonald
,
C. F.
,
2002
, “
A Hybrid System Based on a Personal Turbine (5 kW) and a Solid Oxide Fuel Cell Stack: A Flexible and High Efficiency Energy Concept for the Distributed Power Market
,”
ASME J. Eng. Gas Turbines Power
,
124
(
4
), pp.
850
857
.10.1115/1.1473825
14.
Meadville
,
J. W.
,
1980
, “
Low-Thrust Chemical Propulsion System
,” NASA, Washington, DC, Report No. NASA CR-165210 RI/RDS0-222.
15.
Tiwari
,
R.
,
Eleftheriou
,
K.
,
Ferrari
,
M. L.
,
Efstathiadis
,
T.
,
Traverso
,
A.
, and
Kalfas
,
A.
,
2023
, “
Numerical Investigation of Bladeless Compressor on Different Disk Spaces and Diffuser Configurations
,”
ASME J. Eng. Gas Turbines Power
,
145
(
1
), p.
011017
.10.1115/1.4055705
16.
Tiwari
,
R. N.
,
Traverso
,
A.
,
Pascenti
,
M.
, and
Ferrari
,
M. L.
,
2023
, “
Performance Investigation of a Bladeless Air Compressor Using Numerical Simulation
,”
ASME
Paper No. GT2023-102615.10.1115/GT2023-102615
17.
Rajendran
,
J. D.
, Palaveev, K.,
Anselmi
,
E.
,
Santhanakrishnan
,
M.
, and
Pachidis
,
V.
,
2024
, “
Insights Into the Flow Field and Performance of a Boundary Layer Pump
,”
ASME J. Eng. Gas Turbines Power
, 146(6), p.
061002
.10.1115/1.4063834
18.
Tiwari
,
R. N.
,
2023
, “
Investigation of Micro Gas Turbine System Configurations for Compact Lightweight Applications Based on Reversible Bladeless Tesla Machinery
,”
Ph.D. thesis
,
Universita degli Studi Genova
,
Genova, Italy
.https://iris.unige.it/bitstream/11567/1158156/5/phdunige_4930686.pdf
19.
Hasinger
,
S. H.
, and
Kehrt
,
L. G.
,
1963
, “
Investigation of a Shear Force Pump
,”
ASME J. Eng. Power
,
85
, pp.
201
206
.10.1115/1.3675258
20.
Balje
,
O. E.
,
1962
, “
A Study on Design Criteria and Matching of Turbomachines: Part A—Similarity Relations and Design Criteria of Turbines
,”
ASME J. Eng. Power
,
84
(
1
), pp.
103
114
.10.1115/1.3673350
21.
Wang
,
B.
,
Okamoto
,
K.
,
Yamaguchi
,
K.
, and
Teramoto
,
S.
,
2014
, “
Loss Mechanisms in Shear-Force Pump With Multiple Corotating Disks
,”
ASME J. Fluids Eng.
,
136
(
8
), p.
081101
.10.1115/1.4026585
22.
De Souza
,
B.
,
Niven
,
A.
, and
McEvoy
,
R.
,
2010
, “
A Numerical Investigation of the Constant-Velocity Volute Design Approach as Applied to the Single Blade Impeller Pump
,”
ASME J. Fluids Eng.
,
132
(
6
), p.
061103
.10.1115/1.4001773
23.
Pan
,
D.
,
Whitfield
,
A.
, and
Wilson
,
M.
,
1999
, “
Design Considerations for the Volutes of Centrifugal Fans and Compressors
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
213
(
4
), pp.
401
410
.10.1243/0954406991522356
24.
Yu
,
Y.
,
Ren
,
W.
, and
Liu
,
J.
,
2019
, “
A New Volute Design Method for the Turbo Air Classifier
,”
Powder Technol.
,
348
, pp.
65
69
.10.1016/j.powtec.2019.03.015
25.
Galindo
,
J.
,
Hoyas
,
S.
,
Fajardo
,
P.
, and
Navarro
,
R.
,
2013
, “
Set-Up Analysis and Optimization of CFD Simulations for Radial Turbines
,”
Eng. Appl. Comput. Fluid Mech.
,
7
(
4
), pp.
441
460
.10.1080/19942060.2013.11015484
26.
Menter
,
F. R.
,
1992
, “
Influence of Freestream Values on k-Omega Turbulence Model Predictions
,”
AIAA J.
,
30
(
6
), pp.
1657
1659
.10.2514/3.11115
27.
Menter
,
F. R.
,
1996
, “
A Comparison of Some Recent Eddy-Viscosity Turbulence Models
,”
ASME J. Fluids Eng.
,
118
(
3
), pp.
514
519
.10.1115/1.2817788
28.
Wilcox
,
D. C.
,
1988
, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
,
26
(
11
), pp.
1299
1310
.10.2514/3.10041
29.
Abernethy
,
R. B.
,
Benedict
,
R. P.
, and
Dowdell
,
R. B.
,
1985
, “
ASME Measurement Uncertainty
,”
ASME J. Fluids Eng.
,
107
(
2
), pp.
161
164
.10.1115/1.3242450
30.
Moffat
,
R. J.
,
1985
, “
Using Uncertainty Analysis in the Planning of an Experiment
,”
ASME J. Fluids Eng.
,
107
(
2
), pp.
173
178
.10.1115/1.3242452
31.
Renuke
,
A.
,
Reggio
,
F.
,
Traverso
,
A.
, and
Pascenti
,
M.
,
2022
, “
Experimental Characterization of Losses in Bladeless Turbine Prototype
,”
ASME J. Eng. Gas Turbines Power
,
144
(
4
), p.
041009
.10.1115/1.4053117
32.
Gülich
,
J. F.
,
2003
, “
Disk Friction Losses of Closed Turbomachine Impellers
,”
Forsch. Ingenieurwes.
,
68
(
2
), pp.
87
95
.10.1007/s10010-003-0111-x
33.
Aslan-Zada
,
F. E.
,
Mammadov
,
V. A.
, and
Dohnal
,
F.
,
2013
, “
Brush Seals and Labyrinth Seals in Gas Turbine Applications
,”
J. Power Energy
,
227
(
2
), pp.
216
230
.10.1177/0957650912464922
34.
MTU Aero Engines AG, 2024, “
Brush Seal, World Class Sealing Technology
,” MTU Aero Engines AG, Munich, Germany, accessed Oct. 10, 2024, https://www.mtu.de/engines/services/brush-seals/
You do not currently have access to this content.