Abstract

The geometric scatter in the surfaces of blades and vanes due to manufacturing variability has an impact on the dynamics (structural mistuning) that has been widely studied, but also on the aerodynamics. This geometric variability changes the fluid field, generating disturbances not directly related to the airfoil count. This work focuses on the aerodynamic forcing generated by this manufacturing variability on the adjacent rows. In this paper, deviations from the nominal geometry are obtained from a set of scanned parts. The average manufactured geometry is computed through the point-by-point deviations between the scanned parts and the nominal geometry. Then, principal component analysis (PCA) is applied to the deviations from the average geometry to find a way to describe them in a compact and simple manner. The cold geometries are reconstructed using the mean geometry and the geometric modes; afterwards, a cold-to-hot process is applied to obtain the hot geometry, and finally the resulting aerodynamics are obtained using an in-house computational fluid dynamics (CFD) solver. The loss of the spatial periodicity of the flow due to the geometric variations generates an aerodynamic forcing with a wave number different from the airfoil count. The described method is applied to a representative row constituted by packets of vanes, and two forced response cases are generated. In the first one, the average packet geometry is used to analyze the aerodynamic forcing associated with the geometric variation of the airfoils inside the vane packet. The second one is a conceptual study carried out under some simplified assumptions in order to relate the geometric variability to random low engine order (LEO) disturbances, using the geometric modes obtained from the PCA analysis. In both cases, the induced vibrations on the adjacent rotor row are comparable to the excitation due to the nominal blade-passing.

References

1.
Blais
,
F.
,
2004
, “
Review of 20 Years of Range Sensor Development
,”
J. Electron. Imaging
,
13
(
1
), pp.
231
243
.10.1117/1.1631921
2.
Chang
,
K.-H.
, and
Chen
,
C.
,
2011
, “
3D Shape Engineering and Design Parameterization
,”
Comput.-Aided Des. Appl.
,
8
(
5
), pp.
681
692
.10.3722/cadaps.2011.681-692
3.
Kaszynski
,
A.
,
Beck
,
J. A.
, and
Brown
,
J. M.
,
2013
, “
Uncertainties of an Automated Optical 3D Geometry Measurement, Modeling, and Analysis Process for Mistuned Integrally Bladed Rotor Reverse Engineering
,”
ASME J. Eng. Gas Turbines Power
,
135
(
10
), p.
102504
.10.1115/1.4025000
4.
Gillaugh
,
D. L.
,
Kaszynski
,
A. A.
,
Brown
,
J. M.
,
Beck
,
J. A.
, and
Slater
,
J. C.
,
2019
, “
Mistuning Evaluation Comparison Via As-Manufactured Models, Traveling Wave Excitation, and Compressor Rigs
,”
ASME J. Eng. Gas Turbines Power
,
141
(
6
), p.
061006
.10.1115/1.4042079
5.
Liefke
,
A.
,
Marciniak
,
V.
,
Backhaus
,
J.
,
Frey
,
C.
,
Gottschalk
,
H.
, and
Janoske
,
U.
,
2019
, “
Aerodynamic Impact of Manufacturing Variation on a Nonaxisymmetric Multi-Passage Turbine Stage With Adjoint CFD
,”
ASME
Paper No. GT2019-91480.10.1115/GT2019-91480
6.
Schoenenborn
,
H.
,
Grossmann
,
D.
,
Satzger
,
W.
, and
Zisik
,
H.
,
2010
, “
Determination of Blade-Alone Frequencies of a Blisk for Mistuning Analysis Based on Optical Measurements
,”
ASME
Paper No. GT2009-59148.10.1115/GT2009-59148
7.
Garzon
,
V. E.
, and
Darmofal
,
D. L.
,
2003
, “
Impact of Geometric Variability on Axial Compressor Performance
,”
ASME J. Turbomach.
,
125
(
4
), pp.
692
703
.10.1115/1.1622715
8.
Gambitta
,
M.
,
Beirow
,
B.
, and
Schrape
,
S.
,
2022
, “
A Digital Twin of Compressor Blisk Manufacturing Geometrical Variability for the Aeroelastic Uncertainty Quantification of the Aerodynamic Damping
,”
ASME
Paper No. GT2022-82935.10.1115/GT2022-82935
9.
Feiner
,
D. M.
, and
Griffin
,
J. H.
,
2002
, “
A Fundamental Model of Mistuning for a Single Family of Modes
,”
ASME J. Turbomach.
,
124
(
4
), pp.
597
605
.10.1115/1.1508384
10.
Corral
,
R.
,
Gallardo
,
J. M.
, and
Vasco
,
C.
,
2008
, “
Linear Stability Analysis of LPT Rotor Packets - Part II: Three-Dimensional Results and Mistuning Effects
,”
ASME
Paper No. GT2004-54120.10.1115/GT2004-54120
11.
Brown
,
J. M.
,
Slater
,
J.
, and
Grandhi
,
R. V.
,
2009
, “Probabilistic
Analysis of Geometric Uncertainty Effects on Blade Modal Response
,”
ASME
Paper No. GT2003-38557.10.1115/GT2003-38557
12.
Kaszynski
,
A. A.
,
Beck
,
J. A.
, and
Brown
,
J. M.
,
2014
, “
Automated Finite Element Model Mesh Updating Scheme Applicable to Mistuning Analysis
,”
ASME
Paper No. GT2014-26925.10.1115/GT2014-26925
13.
Lange
,
A.
,
Voigt
,
M.
,
Vogeler
,
K.
,
Schrapp
,
H.
,
Johann
,
E.
, and
Gümmer
,
V.
,
2010
, “
Probabilistic CFD Simulation of a High-Pressure Compressor Stage Taking Manufacturing Variability Into Account
,”
ASME
Paper No. GT2010-22484.10.1115/GT2010-22484
14.
Gambitta
,
M.
,
Kühhorn
,
A.
, and
Schrape
,
S.
,
2021
, “
Geometrical Variability Modelling of Axial Compressor Blisk Aerofoils and Evaluation of Impact on the Forced Response Problem
,”
ASME
Paper No. GT2020-16168.10.1115/GT2020-16168
15.
Gambitta
,
M.
,
Kühhorn
,
A.
,
Beirow
,
B.
, and
Schrape
,
S.
,
2021
, “
Stator Blades Manufacturing Geometrical Variability in Axial Compressors and Impact on the Aeroelastic Excitation Forces
,”
ASME J. Turbomach.
,
144
(
4
), p.
041007
.10.1115/1.4052602
16.
Gambitta
,
M.
,
Beirow
,
B.
, and
Schrape
,
S.
,
2024
, “
Modeling Method for Aeroelastic Low Engine Order Excitation Originating From Upstream Vanes' Geometrical Variability
,”
Int. J. Turbomach., Propul. Power
,
9
(
2
), p.
12
.
17.
Gallardo
,
J. M.
, and
Pérez Escobar
,
Ó.
,
2024
, “
Numerical Study of Low Engine Order Excitations Due to Manufacturing Variability Part II: An Efficient Approach for Stochastic Studies
,”
ASME J. Eng. Gas Turbines Power
, 147(6), p. 061004.10.1115/1.4066538
18.
Corral
,
R.
, and
Pastor
,
G.
,
2004
, “
Parametric Design of Turbomachinery Airfoils Using Highly Differentiable Splines
,”
J. Propul. Power
,
20
(
2
), pp.
335
343
.10.2514/1.1517
19.
Timon
,
V. P.
, and
Corral
,
R.
,
2014
, “
A Study on the Effects of Geometric Non Linearities on the Un-Running Transformation of Compressor Blades
,”
ASME
Paper No. GT2014-25638.10.1115/GT2014-25638
20.
Armstrong
,
E. K.
,
1988
, “
Fatigue and Assessment Methods of Blade Vibration
,”
AGARD Manual on Aeroelasticity in Axial-Flow Turbomachines
, Vol.
2
,
M. F.
Platzer
, and
F. O.
Carta
, eds.,
Agard
, Neuilly-sur-Seine, France, Chap. XVI.
21.
Moffatt
,
S.
, and
He
,
L.
,
2009
, “
Blade Forced Response Prediction for Industrial Gas Turbines: Part 1 – Methodologies
,”
ASME
Paper No. GT2003-38640.10.1115/GT2003-38640
22.
Cordoba
,
O.
,
2021
, “
FEM Considerations to Simulate Interlocked Bladed Disks With Lagrange Multipliers
,”
ASME
Paper No. GT2020-15140.10.1115/GT2020-15140
23.
Corral
,
R.
,
Crespo
,
J.
, and
Gisbert
,
F.
,
2004
, “
Parallel Multigrid Unstructured Method for the Solution of the Navier–Stokes Equations
,”
AIAA
Paper No. 2004-0761.10.2514/6.2004-0761
24.
Corral
,
R.
,
Gisbert
,
F.
, and
Pueblas
,
J.
,
2017
, “
Execution of a Parallel Edge-Based Navier–Stokes Solver on Commodity Graphics Processor Units
,”
Int. J. Comput. Fluid Dyn.
,
31
(
2
), pp.
93
108
.10.1080/10618562.2017.1294686
25.
Gisbert
,
F.
, and
Corral
,
R.
,
2016
, “
A Novel Mixing Plane Method Using Nonreflecting Boundary Conditions for Multirow Analysis in Turbomachines
,”
ASME J. Turbomach.
,
138
(
7
), p.
071009
.10.1115/1.4032539
26.
Corral
,
R.
,
Escribano
,
A.
,
Gisbert
,
F.
,
Serrano
,
A.
, and
Vasco
,
C.
,
2003
, “
Validation of a Linear Multigrid Accelerated Unstructured Navier–Stokes Solver for the Computation of Turbine Blades on Hybrid Grids
,”
AIAA
Paper No. 2003-3326.10.2514/6.2003-3326
27.
Corral
,
R.
,
Gallardo
,
J. M.
, and
Vasco
,
C.
,
2007
, “
Aeroelastic Stability of Welded-in-Pair Low Pressure Turbine Rotor Blades: A Comparative Study Using Linear Methods
,”
ASME J. Turbomach.
,
129
(
1
), pp.
72
83
.10.1115/1.2366512
28.
Serrano González
,
A.
, and
Fernández Aparicio
,
J. R.
,
2016
, “
Turbine Tone Noise Prediction Using a Linearized CFD Solver: Comparison With Measurements
,”
ASME J. Turbomach.
,
138
(
6
), p.
061006
.10.1115/1.4032285
You do not currently have access to this content.