Abstract

Micromix combustion technology has been identified as a promising strategy to mitigate the risks associated with burning high-hydrogen-content fuels. This technology has recently been introduced in premixed injector designs to develop burners with broader fuel flexibility, allowing the combustion of fuels ranging from natural gas, or currently available hydrocarbons, to pure hydrogen by controlling the micromix fuel ratio (MFR). Modifying this additional operating parameter can lead to premixed, partially premixed, and micromixed combustion, each having different stability mechanisms. The combustion characteristics of such flames in an industrial combustion environment with hundreds of injectors are unknown. A multi-injector configuration, consisting of five (5) injectors placed in a cross pattern, is used to investigate the combustion of pure methane to pure hydrogen, and different blends. Stability and combustion dynamic maps are first obtained at atmospheric temperature and pressure for fuel-lean mixtures of H2/CH4 ranging from 0/100%, 70/30%, 90/10%, to 100/0%, by volume. For each fuel mixture, the equivalence ratio is adjusted to maintain the same adiabatic flame temperature throughout the experiments. An increase in blowoff (BO) limit is observed for the multi-injector array compared to a single nozzle, while flashback occurs more rapidly for dominantly premixed conditions with high-hydrogen-content fuel. In addition to extending the flashback limit, micromixed flames are generally quieter for high-hydrogen-content fuels. Laser diagnostics are performed on selected operating conditions with hydrogen content of 0%, 30%, 50%, 70%, 90%, and 100%. Eight cases are investigated in this work at a constant bulk inlet velocity to highlight the impact of hydrogen content and MFR on the flame shape. Two-dimensional (2D) particle image velocimetry (PIV), OH and acetone planar laser-induced fluorescence (PLIF), as well as acoustic measurements are performed simultaneously. The planar measurements show that the OH-PLIF signal becomes thinner and nonaxisymmetric as MFR is increased from 0% to 100%, with the flames gradually transitioning from V-shaped to M-shaped, before stabilizing as jet flames in crossflow.

References

1.
Mazloomi
,
K.
, and
Gomes
,
C.
,
2012
, “
Hydrogen as an Energy Carrier: Prospects and Challenges
,”
Renewable Sustainable Energy Rev.
,
16
(
5
), pp.
3024
3033
.10.1016/j.rser.2012.02.028
2.
Abe
,
J.
,
Popoola
,
A.
,
Ajenifuja
,
E.
, and
Popoola
,
O.
,
2019
, “
Hydrogen Energy, Economy and Storage: Review and Recommendation
,”
Int. J. Hydrogen Energy
,
44
(
29
), pp.
15072
15086
.10.1016/j.ijhydene.2019.04.068
3.
Funke
,
H. H.-W.
,
Beckmann
,
N.
,
Keinz
,
J.
, and
Horikawa
,
A.
,
2021
, “
30 Years of Dry-Low-NOx Micromix Combustor Research for Hydrogen-Rich Fuels—An Overview of Past and Present Activities
,”
ASME J. Eng. Gas Turbines Power
,
143
(
7
), p.
071002
.10.1115/1.4049764
4.
Noble
,
D.
,
Wu
,
D.
,
Emerson
,
B.
,
Sheppard
,
S.
,
Lieuwen
,
T.
, and
Angello
,
L.
,
2021
, “
Assessment of Current Capabilities and Near-Term Availability of Hydrogen-Fired Gas Turbines Considering a Low-Carbon Future
,”
ASME J. Eng. Gas Turbines Power
,
143
(
4
), p.
041002
.10.1115/1.4049346
5.
Candel
,
S.
,
2002
, “
Combustion Dynamics and Control: Progress and Challenges
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
1
28
.10.1016/S1540-7489(02)80007-4
6.
Beita
,
J.
,
Talibi
,
M.
,
Sadasivuni
,
S.
, and
Balachandran
,
R.
,
2021
, “
Thermoacoustic Instability Considerations for High Hydrogen Combustion in Lean Premixed Gas Turbine Combustors: A Review
,”
Hydrogen
,
2
(
1
), pp.
33
57
.10.3390/hydrogen2010003
7.
Ciani
,
A.
,
Wood
,
J. P.
,
Wickström
,
A.
,
Rørtveit
,
G. J.
,
Steeneveldt
,
R.
,
Pettersen
,
J.
,
Wortmann
,
N.
, and
Bothien
,
M. R.
,
2020
, “
Sequential Combustion in Ansaldo Energia Gas Turbines: The Technology Enabler for CO2-Free, Highly Efficient Power Production Based on Hydrogen
,”
ASME
Paper No. GT2020-14794.10.1115/GT2020-14794
8.
Funke
,
H. H.-W.
,
Beckmann
,
N.
, and
Abanteriba
,
S.
,
2019
, “
An Overview on Dry Low NOx Micromix Combustor Development for Hydrogen-Rich Gas Turbine Applications
,”
Int. J. Hydrogen Energy
,
44
(
13
), pp.
6978
6990
.10.1016/j.ijhydene.2019.01.161
9.
Kroniger
,
D.
,
Horikawa
,
A.
,
Funke
,
H. H.-W.
,
Pfaeffle
,
F.
,
Kishimoto
,
T.
, and
Okada
,
K.
,
2021
, “
Experimental and Numerical Investigation on the Effect of Pressure on Micromix Hydrogen Combustion
,”
ASME
Paper No. GT2021-58926.10.1115/GT2021-58926
10.
York
,
W. D.
,
Ziminsky
,
W. S.
, and
Yilmaz
,
E.
,
2013
, “
Development and Testing of a Low NOx Hydrogen Combustion System for Heavy-Duty Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
135
(
2
), p.
022001
.10.1115/1.4007733
11.
Durocher
,
A.
,
Fan
,
L.
,
Francolini
,
B.
,
Furi
,
M.
,
Bourque
,
G.
,
Sirois
,
J.
,
May
,
D.
,
Bergthorson
,
J. M.
,
Yun
,
S.
, and
Vena
,
P.
,
2024
, “
Characterization of a Novel AM Micromix Nozzle Burning Methane to Hydrogen
,”
ASME J. Eng. Gas Turbines Power
,
146
(
5
), p.
051009
.10.1115/1.4063690
12.
Kroniger
,
D.
,
Horikawa
,
A.
,
Okada
,
K.
, and
Ashida
,
Y.
,
2022
, “
Novel Fuel Injector Geometry for Enhancing the Fuel Flexibility of a Dry Low NOx MicroMix Flame
,”
ASME
Paper No. GT2022-83025.10.1115/GT2022-83025
13.
Giuliani
,
F.
,
Paulitsch
,
N.
,
Cozzi
,
D.
,
Görtler
,
M.
, and
Andracher
,
L.
,
2018
, “
An Assessment on the Benefits of Additive Manufacturing Regarding New Swirler Geometries for Gas Turbine Burners
,”
ASME
Paper No. GT2018-75165.10.1115/GT2018-75165
14.
Moosbrugger
,
V.
,
Giuliani
,
F.
,
Paulitsch
,
N.
, and
Andracher
,
L.
,
2019
, “
Progress in Burner Design Using Additive Manufacturing With a Monolithic Approach and Added Features
,”
ASME
Paper No. GT2019-90720.10.1115/GT2019-90720
15.
Jin
,
U.
, and
Kim
,
K. T.
,
2021
, “
Experimental Investigation of Combustion Dynamics and NOx/CO Emissions From Densely Distributed Lean-Premixed Multinozzle CH4/C3H8/H2/Air Flames
,”
Combust. Flame
,
229
, p.
111410
.10.1016/j.combustflame.2021.111410
16.
Kang
,
H.
, and
Kim
,
K. T.
,
2021
, “
Combustion Dynamics of Multi-Element Lean-Premixed Hydrogen-Air Flame Ensemble
,”
Combust. Flame
,
233
, p.
111585
.10.1016/j.combustflame.2021.111585
17.
Asai
,
T.
,
Akiyama
,
Y.
, and
Dodo
,
S.
,
2017
, “
Development of a State-of-the-Art Dry Low NOx Gas Turbine Combustor for IGCC With CCS
,”
Recent Advances in Carbon Capture and Storage
,
IntechOpen
, London, UK.10.5772/66742
18.
Samarasinghe
,
J.
,
Peluso
,
S.
,
Szedlmayer
,
M.
,
De Rosa
,
A.
,
Quay
,
B.
, and
Santavicca
,
D.
,
2013
, “
Three-Dimensional Chemiluminescence Imaging of Unforced and Forced Swirl-Stabilized Flames in a Lean Premixed Multi-Nozzle Can Combustor
,”
ASME J. Eng. Gas Turbines Power
,
135
(
10
), p.
101503
.10.1115/1.4024987
19.
Kwong
,
W. Y.
, and
Steinberg
,
A. M.
,
2019
, “
Blowoff and Reattachment Dynamics of a Linear Multinozzle Combustor
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011015
.10.1115/1.4041070
20.
An
,
Q.
,
Kheirkhah
,
S.
,
Bergthorson
,
J.
,
Yun
,
S.
,
Hwang
,
J.
,
Lee
,
W. J.
,
Kim
,
M. K.
,
Cho
,
J. H.
,
Kim
,
H. S.
, and
Vena
,
P.
,
2021
, “
Flame Stabilization Mechanisms and Shape Transitions in a 3D Printed, Hydrogen Enriched, Methane/Air Low-Swirl Burner
,”
Int. J. Hydrogen Energy
,
46
(
27
), pp.
14764
14779
.10.1016/j.ijhydene.2021.01.112
21.
Schulz
,
C.
, and
Sick
,
V.
,
2005
, “
Tracer-LIF Diagnostics: Quantitative Measurement of Fuel Concentration, Temperature and Fuel/Air Ratio in Practical Combustion Systems
,”
Prog. Energy Combust. Sci.
,
31
(
1
), pp.
75
121
.10.1016/j.pecs.2004.08.002
22.
Salazar
,
V. M.
,
Kaiser
,
S. A.
, and
Halter
,
F.
,
2009
, “
Optimizing Precision and Accuracy of Quantitative PLIF of Acetone as a Tracer for Hydrogen Fuel
,”
SAE Int. J. Fuels Lubr.
,
2
(
1
), pp.
737
761
.10.4271/2009-01-1534
23.
Schefer
,
R.
,
Kulatilaka
,
W.
,
Patterson
,
B.
, and
Settersten
,
T.
,
2009
, “
Visible Emission of Hydrogen Flames
,”
Combust. Flame
,
156
(
6
), pp.
1234
1241
.10.1016/j.combustflame.2009.01.011
You do not currently have access to this content.