Abstract

The growing recognition of ammonia as a carbon-free alternative fuel for both transportation and power generation is underscored by numerous studies. While the use of gaseous ammonia injection has been extensively considered, research on the direct injection of liquid ammonia remains relatively scarce, especially in the case of internal combustion engines (ICE). The application of liquid ammonia in gas turbines offers economic and size-related advantages over gaseous ammonia injection. But the liquid ammonia's instantaneous spray flash-boiling and its high latent heat of vaporization induce the necessity of employing preheated swirling air to enhance flame stability, mitigating the strong cooling effect induced. The preference for direct injection of liquid ammonia is driven by its efficacy in controlling in-cylinder air–fuel ratios and optimizing thermal efficiency. This study presents macroscopic and near-field Schlieren measurements of a one-hole Engine Combustion Network (ECN) Spray M, representative of direct liquid injector for engine, with ammonia for different degrees of superheating. Spray angles and penetration length are provided as a function of the superheat degree with also a focus near the injector nozzle. Additionally, in-spray temperature measurements are presented, providing the first valuable information for modeling purposes.

References

1.
Yu
,
X.
,
Sandhu
,
N. S.
,
Yang
,
Z.
, and
Zheng
,
M.
,
2020
, “
Suitability of Energy Sources for Automotive Application—A Review
,”
Appl. Energy
,
271
, p.
115169
.10.1016/j.apenergy.2020.115169
2.
Ong
,
C. W.
,
Chang
,
N.
,
Tsai
,
M.-L.
, and
Chen
,
C.-L.
,
2024
, “
Decarbonizing the Energy Supply Chain: Ammonia as an Energy Carrier for Renewable Power Systems
,”
Fuel
,
360
, p.
130627
.10.1016/j.fuel.2023.130627
3.
Valera-Medina
,
A.
,
Amer-Hatem
,
F.
,
Azad
,
A. K.
,
Dedoussi
,
I. C.
,
de Joannon
,
M.
,
Fernandes
,
R. X.
,
Glarborg
,
P.
, et al.,
2021
, “
Review on Ammonia as a Potential Fuel: From Synthesis to Economics
,”
Energy Fuels
,
35
(
9
), pp.
6964
7029
.10.1021/acs.energyfuels.0c03685
4.
Mathieu
,
O.
, and
Petersen
,
E. L.
,
2023
,
Carbon-Free Fuels
(ACS In Focus),
American Chemical Society
,
Washington, DC
.
5.
Pelé
,
R.
,
Brequigny
,
P.
,
Bellettre
,
J.
, and
Mounaïm-Rousselle
,
C.
,
2023
, “
Performances and Pollutant Emissions of Spark Ignition Engine Using Direct Injection for Blends of Ethanol/Ammonia and Pure Ammonia
,”
Int. J. Engine Res.
,
25
(
2
), p.
14680874231170661
.10.1177/14680874231170661
6.
Okafor
,
E. C.
,
Kurata
,
O.
,
Yamashita
,
H.
,
Inoue
,
T.
,
Tsujimura
,
T.
,
Iki
,
N.
,
Hayakawa
,
A.
,
Ito
,
S.
,
Uchida
,
M.
, and
Kobayashi
,
H.
,
2021
, “
Liquid Ammonia Spray Combustion in Two-Stage Micro Gas Turbine Combustors at 0.25 MPa; Relevance of Combustion Enhancement to Flame Stability and NOx Control
,”
Appl. Energy Combust. Sci.
,
7
, p.
100038
.10.1016/j.jaecs.2021.100038
7.
Li
,
S.
,
Li
,
T.
,
Wang
,
N.
,
Zhou
,
X.
,
Chen
,
R.
, and
Yi
,
P.
,
2022
, “
An Investigation on Near-Field and Far-Field Characteristics of Superheated Ammonia Spray
,”
Fuel
,
324
, p.
124683
.10.1016/j.fuel.2022.124683
8.
Liu
,
X.
,
Yao
,
X.
,
Wang
,
Z.
, and
Tang
,
C.
,
2023
, “
Single Hole Ammonia Spray Macroscopic and Microscopic Characteristics at Flare and Transition Flash Boiling Regions
,”
Appl. Therm. Eng.
,
235
, p.
121443
.10.1016/j.applthermaleng.2023.121443
9.
Shen
,
L.
, and
Leach
,
F.
,
2024
, “
Effect of Ambient Pressure on Ammonia Sprays Using a Single Hole Injector
,”
SAE
Paper No. 2024-01-2618.10.4271/2024-01-2618
10.
Colson
,
S.
,
Yamashita
,
H.
,
Oku
,
K.
,
Somarathne
,
K. D. K. A.
,
Kudo
,
T.
,
Hayakawa
,
A.
, and
Kobayashi
,
H.
,
2023
, “
Study on the Effect of Injection Temperature and Nozzle Geometry on the Flashing Transition of Liquid Ammonia Spray
,”
Fuel
,
348
, p.
128612
.10.1016/j.fuel.2023.128612
11.
Yamashita
,
H.
,
Hayakawa
,
A.
,
Oku
,
K.
,
Colson
,
S.
,
Reibel
,
G.
,
Chen
,
Y.-R.
,
Somarathne
,
K. D. K. A.
, et al.,
2024
, “
Visualization of Liquid Ammonia Spray Using 2p-SLIPI and Comparison of Liquid Ammonia Spray and Gaseous Ammonia Combustion in a Swirl Combustor at Atmospheric Pressure
,”
Fuel
,
371
(
Pt. A
), p.
131833
.10.1016/j.fuel.2024.131833
12.
Giles
,
A.
,
Hao
,
S.
,
Harper
,
J.
,
Goktepe
,
B.
,
Bowen
,
P.
, and
Valera-Medina
,
A.
,
2024
,
Ammonia Sprays for Combustion: A Review
,
Johnson Matthey
,
Royston, UK
.
13.
Zembi
,
J.
,
Battistoni
,
M.
,
Pandal
,
A.
,
Rousselle
,
C.
,
Pelé
,
R.
,
Brequigny
,
P.
, and
Hespel
,
C.
,
2023
, “
Numerical Study of Ammonia Spray With a GDI Engine Injector
,”
Ammonia Energy
, 1(1).10.18573/jae.13
14.
Battistoni
,
M.
,
Mounaïm-Rousselle
,
C.
, and
García-Oliver
,
J. M.
,
2023
, “
ECN9 - Ammonia Injection and Combustion
,”
ECN9 Proceedings
, Naples, Italy, Sept. 8–9.
15.
Otsu
,
N.
,
1979
, “
A Threshold Selection Method From Gray-Level Histograms
,”
IEEE Trans. Syst., Man, Cybern.
,
9
(
1
), pp.
62
66
.10.1109/TSMC.1979.4310076
16.
Yen
,
J. C.
,
Chang
,
F. J.
, and
Chang
,
S.
,
1995
, “
A New Criterion for Automatic Multilevel Thresholding
,”
IEEE Trans. Image Process.: Publ. IEEE Signal Process. Soc.
,
4
(
3
), pp.
370
378
.10.1109/83.366472
17.
Girshick
,
S. L.
, and
Chiu
,
C.-P.
,
1990
, “
Kinetic Nucleation Theory: A New Expression for the Rate of Homogeneous Nucleation From an Ideal Supersaturated Vapor
,”
J. Chem. Phys.
,
93
(
2
), pp.
1273
1277
.10.1063/1.459191
18.
Lamanna
,
G.
,
Kamoun
,
H.
,
Weigand
,
B.
, and
Steelant
,
J.
,
2014
, “
Towards a Unified Treatment of Fully Flashing Sprays
,”
Int. J. Multiphase Flow
,
58
, pp.
168
184
.10.1016/j.ijmultiphaseflow.2013.08.010
19.
Zhang
,
J.
,
Li
,
Y.
,
Xu
,
H.
,
Liu
,
Y.
,
Ma
,
X.
,
Xu
,
H.
, and
Shuai
,
S.
,
2022
, “
Characterizing Underexpansion Behaviors Induced by Rapid Phase Change of Flash-Boiling Jets
,”
Fuel
,
329
, p.
125404
.10.1016/j.fuel.2022.125404
20.
Somarathne
,
K. D. K. A.
,
Yamashita
,
H.
,
Colson
,
S.
,
Oku
,
K.
,
Honda
,
K.
,
Okafor
,
E. C.
,
Hayakawa
,
A.
,
Kudo
,
T.
, and
Kobayashi
,
H.
,
2023
, “
Towards the Development of Liquid Ammonia/Air Spray Combustion in a Gas Turbine-Like Combustor at Moderately High Pressure
,”
Appl. Energy Combust. Sci.
,
16
, p.
100215
.10.1016/j.jaecs.2023.100215
You do not currently have access to this content.