Abstract

Soil erosion characteristics in embankment dam materials play a crucial role in the evolution of breach morphology because of overtopping-induced dam failure. This study develops a testing technology that directly measures the shear stress at the water–soil interface by detecting the microstrain in the soil. Consequently, a soil erosion testing device (SETD) is designed to directly measure both the critical shear stress necessary for soil erosion initiation and the erosion rate. The SETD includes a hydrodynamic system, a soil erosion system, and a data acquisition system. The hydrodynamic system continuously observes the flow velocity adjacent to the soil sample. In contrast, a sample lifting component monitors the erosion progress in real time, maintaining a consistent height at the water contact point to ensure uninterrupted erosion. The erosion system utilizes a shear stress measurement component to measure the flow shear stress at the water–soil interface directly, and the data acquisition system automatically logs both the flow shear stress and the erosion rate of the soil sample. The validation experiments demonstrate a linear correlation between the erosion rate of cohesive soils and flow shear stress. The critical shear stress for initiating erosion increases significantly with higher compaction levels and clay content. For noncohesive soils, the experiments have established a distinct linear correlation between critical shear stress and median grain size on a double-logarithmic scale, underscoring the impact of particle size on erosion characteristics. Based on the experimental data presented in this study, a predictive model was developed for the critical shear stress and erosion coefficient of cohesive soils. Results indicated that by optimizing model parameters and incorporating more soil-related characteristics, the model effectively captured the relationship between critical shear stress, erosion coefficient, and soil properties. This provides a scientific basis for selecting erosion parameters of dam materials in dam breach simulations.

References

1.
ASCE/EWRI Task Committee on Dam/Levee Breaching.
2011
. “
Earthen Embankment Breaching
.”
Journal of Hydraulic Engineering
137
, no. 
12
(December):
1549
1564
. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000498
2.
Bernhardt
,
M. L.
, “
2008 Midwest Levee Failures: Erosion Studies
.” Master’s thesis,
Texas A&M University
,
2009
.
3.
Briaud
,
J. L.
2006
.
Erosion Tests on New Orleans Levee Samples, Internal Report
.
College Station, TX
:
Texas A&M University
.
4.
Briaud
,
J. L.
2008
. “
Case Histories in Soil and Rock Erosion: Woodrow Wilson Bridge, Brazos River Meander, Normandy Cliffs, and New Orleans Levees
.”
Journal of Geotechnical and Geoenvironmental Engineering
134
, no. 
10
(October):
1425
1447
. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:10(1425)
5.
Briaud
,
J. L.
,
Ting
F. C. K.
,
Chen
H. C.
,
Gudavalli
R.
,
Perugu
S.
, and
Wei
G.
.
1999
. “
SRICOS: Prediction of Scour Rate in Cohesive Soils at Bridge Piers
.”
Journal of Geotechnical and Geoenvironmental Engineering
125
, no. 
4
(April):
237
246
. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:4(237)
6.
Briaud
,
J. L.
,
Ting
F. C. K.
,
Chen
H. C.
,
Cao
Y.
,
Han
S. W.
, and
Kwak
K. W.
.
2001
. “
Erosion Function Apparatus for Scour Rate Predictions
.”
Journal of Geotechnical and Geoenvironmental Engineering
127
, no. 
2
(February):
105
113
. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:2(105)
7.
Briaud
J. L.
,
Govindasamy
A. V.
, and
Shafii
I.
.
2017
. “
Erosion Charts for Selected Geomaterials
.”
Journal of Geotechnical and Geoenvironmental Engineering
143
, no. 
10
(October):
1
12
. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001771
8.
Chapuis
,
R. P.
and
Gatien
T.
.
1986
. “
An Improved Rotating Cylinder Technique for Quantitative Measurements of the Scour Resistance of Clays
.”
Canadian Geotechnical Journal
23
, no. 
1
(February):
83
87
. https://doi.org/10.1139/t86-010
9.
Clark
,
L. A.
and
Wynn
T. M.
.
2007
. “
Methods for Determining Streambank Critical Shear Stress and Soil Erodibility: Implications for Erosion Rate Predictions
.”
Transactions of the ASABE
50
, no. 
1
(January):
95
106
. https://doi.org/10.13031/2013.22415
10.
Crowley
,
R. W.
,
Bloomquist
D. B.
,
Shah
F. D.
, and
Holst
C. M.
.
2012
a. “
The Sediment Erosion Rate Flume (SERF): A New Testing Device for Measuring Soil Erosion Rate and Shear Stress
.”
Geotechnical Testing Journal
35
, no. 
4
(July):
649
659
. https://doi.org/10.1520/GTJ103814
11.
Crowley
,
R. W.
,
Bloomquist
D.
,
Hayne
J. R.
,
Holst
C. M.
, and
Shah
F. D.
.
2012
b. “
Estimation and Measurement of Bed Material Shear Stresses in Erosion Rate Testing Devices
.”
Journal of Hydraulic Engineering
138
, no. 
11
(November):
990
994
. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000608
12.
Foster
,
G. R.
,
Meyer
L. D.
, and
Onstad
C. A.
.
1977
. “
An Erosion Equation Derived from Basic Erosion Principles
.”
Transactions of the ASAE
20
, no. 
4
(March):
0678
0682
. https://doi.org/10.13031/2013.35627
13.
Gibbs
,
H. J.
1962
.
A Study of Erosion and Tractive Force Characteristics in Relation to Soil Mechanics Properties, Earth Research Program, Soils Engineering Report. No. EM-643.
Denver, CO:
United States Department of the Interior, Bureau of Reclamation
.
14.
Govindasamy
,
A. V.
Simplified Method for Estimating Future Scour Depth at Existing Bridges
.” PhD diss.,
Texas A&M University
,
2009
.
15.
Graf
,
W. H.
1984
.
Hydraulics of Sediment Transport, Jessie B. Cox Ocean Studies Collection
.
Littleton, CO
:
Water Resources Publications
.
16.
Guo
,
J.
and
Julien
P. Y.
.
2005
. “
Shear Stress in Smooth Rectangular Open-Channel Flows
.”
Journal of Hydraulic Engineering
131
, no. 
1
(January):
30
37
. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:1(30)
17.
Hanson
,
G. J.
1990
. “
Surface Erodibility of Earthen Channels at High Stresses Part I – Open Channel Testing
.”
Transactions of the ASAE
33
, no. 
1
(January/February):
0127
0131
. https://doi.org/10.13031/2013.31305
18.
Hanson
,
G. J.
1991
. “
Development of A Jet Index to Characterize Erosion Resistance of Soils in Earthen Spillways
.”
Transactions of the ASAE
34
, no. 
5
(September/October):
2015
2020
. https://doi.org/10.13031/2013.31831
19.
Hanson
,
G. J.
and
Simon
A.
.
2001
. “
Erodibility of Cohesive Streambeds in the Loess Area of the Midwestern USA
.”
Hydrological Processes
15
, no. 
1
(January):
23
38
. https://doi.org/10.1002/hyp.149
20.
Independent Levee Investigation Team (ILIT).
2006
.
Investigation of the Performance of the New Orleans Flood Protection Systems in Hurricane Katrina in August 29, 2005
.
Berkeley, CA
:
The University of California, Berkeley
.
21.
Julian
,
J. P.
and
Torres
R.
.
2006
. “
Hydraulic Erosion of Cohesive Riverbanks
.”
Geomorphology
76
, nos. 
1–2
(June):
193
206
. https://doi.org/10.1016/j.geomorph.2005.11.003
22.
Kamphuis
,
J. W.
,
Gaskin
P. N.
, and
Hoogendoorn
E.
.
1990
. “
Erosion Tests on Four Intact Ontario Clays
.”
Canadian Geotechnical Journal
27
, no. 
5
(October):
692
696
. https://doi.org/10.1139/t90-082
23.
Kimiaghalam
,
N.
,
Clark
S. P.
, and
Ahmari
H.
.
2016
. “
An Experimental Study on the Effects of Physical, Mechanical, and Electrochemical Properties of Natural Cohesive Soils on Critical Shear Stress and Erosion Rate
.”
International Journal of Sediment Research
31
, no. 
1
(March):
1
15
. https://doi.org/10.1016/j.ijsrc.2015.01.001
24.
Kwak
,
K.
Prediction of Scour Depth Versus Time for Bridge Piers in Cohesive Soils in the Case of Multi-flood and Layered Soil Systems
.” PhD diss.,
Texas A&M University
,
2000
.
25.
Moore
,
W. L.
and
Masch
F. D.
 Jr.
1962
. “
Experiments on the Scour Resistance of Cohesive Sediments
.”
Journal of Geophysical Research
67
, no. 
4
(April):
1437
1446
. https://doi.org/10.1029/JZ067i004p01437
26.
Owen
,
M. W.
1975
.
Erosion of Avonmouth Mud, Report No. INT 150
. Wallingford, UK: Hydraulic Research Station.
27.
Potter
,
K. N.
,
Velazquez-Garcia
J. D.
, and
Torbert
H. A.
.
2002
. “
Use of a Submerged Jet Device to Determine Channel Erodibility Coefficients of Selected Soils of Mexico
.”
Journal of Soil and Water Conservation
57
, no. 
5
(September/October):
272
277
. https://doi.org/https://www.jswconline.org/content/57/5/272
28.
Rahimi
,
M.
,
Shafieezadeh
A.
,
Wood
D.
, and
Kubatko
E. J.
,
2019
. “
An Adaptive Kriging-Based Approach with Weakly Stationary Random Fields for Soil Slope Reliability Analysis
.” In
Eighth International Conference on Case Histories in Geotechnical Engineering
, 148-157. Reston, VA:
American Society of Civil Engineers
. https://doi.org/10.1061/9780784482155.015
29.
Rifai
,
I.
,
Erpicum
S.
,
Archambeau
P.
,
Violeau
D.
,
Pirotton
M.
,
Abderrezzak
K. E. K.
, and
Dewals
B.
.
2017
. “
Overtopping Induced Failure of Noncohesive, Homogeneous Fluvial Dikes
.”
Water Resources Research
53
, no. 
4
(April):
3373
3386
. https://doi.org/10.1002/2016WR020053
30.
Shafii
,
I.
,
Briaud
J. L.
,
Chen
H. C.
, and
Shidlovskaya
A.
.
2016
. “
Relationship between Soil Erodibility and Engineering Properties
.” In
Eighth International Conference on Scour and Erosion (ICSE 2016)
, 1055-1060. Irvine, CA:
Scientific Research Publishing
. https://doi.org/10.1201/9781315375045-134
31.
Shidlovskaya
,
A.
,
Bahmani
M.
,
Briaud
J. L.
, and
Chen
H. C.
.
2023
. “
Improvements in Test Procedure and Data Reduction for the Borehole Erosion Test
.”
Geotechnical Testing Journal
46
, no. 
2
(March):
295
315
. https://doi.org/10.1520/GTJ20220008
32.
Shields
,
I. A.
1936
.
Application of Similarity Principles and Turbulence Research to Bed-Load Movement.
Pasadena, CA:
United States Department of Agriculture Soil Conservation Service.
33.
Smerdon
,
E. T.
and
Beasley
R. P.
.
1961
. “
Critical Tractive Forces in Cohesive Soils
.”
Journal of Agricultural Engineering
42
, no. 
1
(September):
26
29
.
34.
Thoman
,
R. W.
and
Niezgoda
S. L.
.
2008
. “
Determining Erodibility, Critical Shear Stress, and Allowable Discharge Estimates for Cohesive Channels: Case Study in the Powder River Basin of Wyoming
.”
Journal of Hydraulic Engineering
134
, no. 
12
(December):
1677
1687
. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:12(1677)
35.
Thorn
,
M. F. C.
and
Parsons
J. G.
.
1980
. “
Erosion of Cohesive Sediments in Estuaries: An Engineering Guide
.” In
Proceedings of the Third International Symposium on Dredging Technology
,
349
358
. Bedfordshire, UK:
BHRA
.
36.
Trammel
,
M. A.
Laboratory Apparatus and Methodology for Evaluating Water Erosion Rates of Erodible Rock and Cohesive Sediments
.” Master’s thesis,
University of Florida
,
2004
.
37.
Wan
,
C. F.
and
Fell
R.
.
2004
. “
Investigation of Rate of Erosion of Soils in Embankment Dams
.”
Journal of Geotechnical and Geoenvironmental Engineering
130
, no. 
4
(April):
373
380
. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:4(373)
38.
Yu
,
S.
,
Chen
Z. Y.
,
Chen
S. J.
,
Ma
L. Q.
,
Li
X. N.
,
Sha
P. J.
, and
Wang
L.
.
2021
. “
A New Measurement Method of the Erodibility of Soil
.”
Geotechnical Testing Journal
44
, no. 
1
(January):
3
14
. https://doi.org/10.1520/GTJ20180005
39.
Zhang
,
L. M.
,
Peng
M.
,
Chang
D. S.
, and
Xu
Y.
.
2016
.
Dam Failure Mechanisms and Risk Assessment
. Hoboken, NJ: John Wiley & Sons. https://doi.org/10.1002/9781118558522.fmatter
40.
Zhong
,
Q. M.
,
Chen
S. S.
,
Deng
Z.
, and
Mei
S. A.
.
2019
. “
Prediction of Overtopping-Induced Breach Process of Cohesive Dams
.”
Journal of Geotechnical and Geoenvironmental Engineering
145
, no. 
5
(May): 04019012. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002035
41.
Zhong
,
Q. M.
,
Wang
L.
,
Chen
S. S.
,
Chen
Z. Y.
,
Shan
Y. B.
,
Zhang
Q.
,
Ren
Q.
, et al.
2021
. “
Breaches of Embankment and Landslide Dams – State of the Art Review
.”
Earth-Science Reviews
216
: 103597. https://doi.org/10.1016/j.earscirev.2021.103597
This content is only available via PDF.
You do not currently have access to this content.