A detailed experimental and analytical study has been performed to evaluate how copper porous foam (CPF) enhances the heat transfer performance in a cylindrical solid/liquid phase change thermal energy storage system. The CPF used in this study had a 95% porosity and the phase change material (PCM) was 99% pure eicosane. The PCM and CPF were contained in a vertical cylinder where the temperature at its radial boundary was held constant, allowing both inward freezing and melting of the PCM. Detailed quantitative time-dependent volumetric temperature distributions and melt/freeze front motion and shape data were obtained. As the material changed phase, a thermal resistance layer built up, resulting in a reduced heat transfer rate between the surface of the container and the phase change front. In the freezing analysis, we analytically determined the effective thermal conductivity of the combined PCM/CPF system and the results compared well to the experimental values. The CPF increased the effective thermal conductivity from 0.423WmKto3.06WmK. For the melting studies, we employed a heat transfer scaling analysis to model the system and develop heat transfer correlations. The scaling analysis predictions closely matched the experimental data of the solid/liquid interface position and Nusselt number.

1.
Viskanta
,
R.
,
Bathelt
,
R.
, and
Hale
,
N. W.
, 1980, “
Latent Heat-of-Fusion Energy Storage: Experiments on Heat Transfer During Solid-Liquid Phase Change
,”
Alternative Energy Sources III: Proceedings of the Third Miami Conference on Alternative Energy Sources
,
Hemisphere, Washington, DC
.
2.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
, 1959,
Conduction of Heat in Solids
,
Clarendon
,
Oxford, England
.
3.
Majumdar
,
A. S.
,
Ashraf
,
F. A.
, and
Weber
,
M. E.
, 1979, “
PMC Thermal Energy Storage in Cylindrical Containers of Various Configurations
,”
Proceedings of the Second International Conference on Alternative Energy Sources
,
Miami
, Dec.
4.
Pannu
,
J.
,
Joglekar
,
G.
, and
Rice
,
P. A.
, 1980, “
Natural Convection Heat Transfer to Cylinders of Phase Change Material Used for Thermal Storage
,”
AIChE Symp. Ser.
0065-8812,
76
(
198
), pp.
47
55
.
5.
Sparrow
,
E. M.
, and
Broadbent
,
J. A.
, 1983, “
Freezing in a Vertical Tube
,”
ASME J. Heat Transfer
0022-1481,
105
, pp.
217
225
.
6.
Lunardini
,
V. J.
, 1991,
Heat Transfer With Freezing and Thawing
,
Elsevier Science
,
New York
.
7.
Poulikakous
,
D.
, 1994,
Conduction Heat Transfer
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
8.
Akgün
,
M.
,
Aydın
,
O.
, and
Kaygusuz
,
K.
, 2007, “
Experimental Study on Melting/Solidification Characteristics of a Paraffin as PCM
,”
Energy Convers. Manage.
0196-8904,
48
, pp.
669
678
.
9.
Koh
,
J. C. Y.
, and
Stevens
,
R. L.
, 1976, “
Enhancement of Cooling Effectiveness by Porous Material in Coolant Passage
,”
ASME J. Heat Transfer
0022-1481,
97
, pp.
309
311
.
10.
Weaver
,
J. A.
, and
Viskanta
,
R.
, 1986, “
Freezing of Liquid-Saturated Porous Media
,”
ASME J. Heat Transfer
0022-1481,
108
, pp.
654
659
.
11.
Weaver
,
J. A.
, and
Viskanta
,
R.
, 1986, “
Melting of Frozen, Porous Media Contained in a Horizontal or Vertical Cylinder Capsule
,”
Int. J. Heat Mass Transfer
0017-9310,
29
, pp.
1943
1951
.
12.
Tong
,
X.
, and
Khan
,
J. A.
, 1996, “
Enhancement of Heat Transfer by Inserting a Metal Matrix Into a Phase Change Material
,”
Numer. Heat Transfer, Part A
1040-7782,
30
, pp.
125
141
.
13.
Py
,
X.
,
Olives
,
R.
, and
Mauran
,
S.
, 2001, “
Paraffin/Porous-Graphite-Matrix Composite as a High and Constant Power Thermal Storage Material
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
2727
2737
.
14.
Trelles
,
J. P.
, and
Dufly
,
J. J.
, 2003, “
Numerical Simulation of Porous Latent Heat Thermal Energy Storage for Thermoelectric Cooling
,”
Appl. Therm. Eng.
1359-4311,
23
, pp.
1647
1664
.
15.
Mesalhy
,
O.
,
Lafdi
,
K.
,
Elgafy
,
A.
, and
Bowman
,
K.
, 2005, “
Numerical Study for Enhancing the Thermal Conductivity of Phase Change Material (PCM) Storage Using High Thermal Conductivity Porous Matrix
,”
Energy Convers. Manage.
0196-8904,
46
, pp.
847
867
.
16.
Bejan
,
A.
, 1995,
Convection Heat Transfer
, 2nd ed.,
Wiley
,
New York
.
17.
Bejan
,
A.
, 2003, “
Simple Methods for Convection in Porous Media: Scale Analysis and the Intersection of Asymptotes
,”
Int. J. Energy Res.
0363-907X,
27
, pp.
859
874
.
18.
Kim
,
S.
, and
Kim
,
M. C.
, 2002, “
A Scale Analysis of Turbulent Heat Transfer Driven by Buoyancy in a Porous Layer With Homogeneous Heat Sources
,”
Int. Commun. Heat Mass Transfer
0735-1933,
29
, pp.
127
134
.
19.
Sarris
,
I. E.
,
Lekakis
,
I.
, and
Vlachos
,
N. S.
, 2004, “
Natural Convection in Rectangular Tanks Heated Locally From Below
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
3549
3563
.
20.
Hale
,
D. V.
,
Hoover
,
M. J.
, and
O’Neill
,
M. J.
, 1971, “
Phase Change Handbook
,” NASA Contractor Report No. NASA-CR-61363.
21.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
, 1990,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
22.
Siahpush
,
A.
, 2002, “
Performance of Solid/Liquid Phase-Change Thermal Energy Storage Systems Through the Use of a High Conductivity Porous Metal Matrix
,” Ph.D. thesis University of Idaho, Idaho.
23.
Beckermann
,
C.
, and
Viskanta
,
R.
, 1988, “
Natural Convection Solid/Liquid Phase Change in Porous Medium
,”
Int. J. Heat Mass Transfer
0017-9310,
31
, pp.
35
46
.
24.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 1999, “
The Effective Thermal Conductivity of High Porosity Fibrous Metal Foams
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
466
471
.
25.
Coleman
,
H. W.
, and
Steele
,
W. G.
, 1989,
Experimentation and Uncertainty Analysis for Engineers
,
Wiley
,
New York
.
26.
Jany
,
P.
, and
Bejan
,
A.
, 1988, “
Scale of Melting in the Presence of Natural Convection in a Rectangular Cavity Filled With Porous Medium
,”
ASME J. Heat Transfer
0022-1481,
110
, pp.
526
528
.
27.
Jany
,
P.
, and
Bejan
,
A.
, 1988, “
Scaling Theory of Melting With Natural Convection in an Enclosure
,”
Int. J. Heat Mass Transfer
0017-9310,
31
(
6
), pp.
1221
1235
.
28.
Jany
,
P.
, and
Bejan
,
A.
, 1987, “
Melting in Presence of Natural Convection in a Rectangular Cavity Filled With Porous Medium
,” Department of Mechanical Engineering and Material Science, Duke University, Report No. DU-AB-4.
29.
Burmeister
,
L. C.
, 1993,
Convective Heat Transfer
,
Wiley
,
New York
.
You do not currently have access to this content.