In this paper, forced convection heat transfer occurring in microchannels with different microstructures is investigated numerically. It is found that vortices will appear in the microstructure grooves. The influence of microchannel geometries on heat transfer performance is evaluated by Nusselt number and the entrance effect is noted for all geometries. Compared with the plain plate surface, a much more moderate decrease of local Nusselt number can be found for all the grooved microstructures, indicating more uniform heat transfer intensity along the flowing direction. The results also suggest that the heat transfer performance improves with inlet Reynolds number. The V-shaped grooved microstructure possesses the highest heat transfer performance. Compared with the plain plate surface, averaged Nusselt number can be increased by about 1.6 times. Through the field synergy principle analysis, we find that it is the synergy between temperature gradient and velocity that results in different heat transfer performance for different microstructures.

References

1.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
, 1981, “
High-Performance Heat Sinking for Vlsi
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.
2.
Li
,
Z.
,
Tao
,
W. Q.
, and
He
,
Y. L.
, 2006, “
A Numerical Study of Laminar Convective Heat Transfer in Microchannel with Non-Circular Cross-Section
,”
Int. J. Therm. Sci.
,
45
(
12
), pp.
1140
1148
.
3.
Chen
,
Y.
,
Zhang
,
C.
,
Shi
,
M.
, and
Wu
,
J.
, 2009, “
Three-Dimensional Numerical Simulation of Heat and Fluid Flow in Noncircular Microchannel Heat Sinks
,”
Int. Commun. Heat Mass Transfer
,
36
(
9
), pp.
917
920
.
4.
Ji
,
Y.
,
Yuan
,
K.
, and
Chung
,
J. N.
, 2006, “
Numerical Simulation of Wall Roughness on Gaseous Flow and Heat Transfer in a Microchannel
,”
Int. J. Heat Mass Transfer
,
49
(
7–8
), pp.
1329
1339
.
5.
Harley
,
J. C.
,
Huang
,
Y.
,
Bau
,
H. H.
, and
Zemel
,
J. N.
, 1995, “
Gas Flow in Micro-Channels
,”
J. Fluid Mech.
,
284
, pp.
257
274
.
6.
Zu
,
Y. Q.
,
Yan
,
Y. Y.
,
Li
,
J. Q.
, and
Han
,
Z. W.
, 2010, “
Wetting Behaviours of a Single Droplet on Biomimetic Micro Structured Surfaces
,”
J. Bionic Eng.
,
7
(
2
), pp.
191
198
.
7.
Yan
,
Y. Y.
, and
Zu
,
Y. Q.
, 2007, “
A Lattice Boltzmann Method for Incompressible Two-Phase Flows on Partial Wetting Surface with Large Density Ratio
,”
J. Comput. Phys.
,
227
(
1
), pp.
763
775
.
8.
Varmazyar
,
M.
, and
Bazargan
,
M.
, 2011, “
Modeling of Free Convection Heat Transfer to a Supercritical Fluid in a Square Enclosure by the Lattice Boltzmann Method
,”
ASME J. Heat Transfer
,
133
(
2
), p.
022501
.
9.
Tao
,
W. Q.
, and
He
,
Y. L.
, 2010,
“Multiscale Simulations of Heat Transfer and Fluid Flow Problems,”
14th International Heat Transfer Conference
,
Washington, D.C., USA
.
10.
He
,
X.
,
Chen
,
S.
, and
Doolen
,
G. D.
, 1998, “
A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit* 1
,”
J. Comput. Phys.
,
146
(
1
), pp.
282
300
.
11.
Incropera
,
F. P.
, 1999,
Liquid Cooling of Electronic Devices by Single-Phase Convection
,
Wiley
,
New York
.
12.
Fluent, 2006, Fluent 6.3 User’s Guide, Fluent Inc., Lebanon.
13.
Yan
,
Y. Y.
, and
Zu
,
Y. Q.
, 2008, “
Numerical Simulation of Heat Transfer and Fluid Flow Past a Rotating Isothermal Cylinder-a Lbm Approach
,”
Int. J. Heat Mass Transfer
,
51
(
9–10
), pp.
2519
2536
.
14.
Qian
,
Y. H.
,
D’humieres
,
D.
, and
Lallemand
,
P.
, 1992, “
Lattice Bgk Models for Navier-Stokes Equation
,”
EPL (Europhys. Lett.)
,
17
(
6
), p.
479
.
15.
Wang
,
M.
, and
Pan
,
N.
, 2008, “
Modeling and Prediction of the Effective Thermal Conductivity of Random Open-Cell Porous Foams
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
), pp.
1325
1331
.
16.
Guo
,
Z.
,
Shi
,
B.
, and
Zheng
,
C.
, 2002, “
A Coupled Lattice Bgk Model for the Boussinesq Equations
,”
Int. J. Numer. Methods Fluids
,
39
(
4
), pp.
325
342
.
17.
Li
,
J.
,
Peterson
,
G. P.
, and
Cheng
,
P.
, 2004, “
Three-Dimensional Analysis of Heat Transfer in a Micro-Heat Sink with Single Phase Flow
,”
Int. J. Heat Mass Transfer
,
47
(
19–20
), pp.
4215
4231
.
18.
Taylor
,
J. B.
,
Carrano
,
A. L.
, and
Kandlikar
,
S. G.
, 2006, “
Characterization of the Effect of Surface Roughness and Texture on Fluid Flow–Past, Present, and Future
,”
Int. J. Therm. Sci.
,
45
(
10
), pp.
962
968
.
19.
Do
,
K. H.
,
Kim
,
S. J.
, and
Garimella
,
S. V.
, 2008, “
A Mathematical Model for Analyzing the Thermal Characteristics of a Flat Micro Heat Pipe with a Grooved Wick
,”
Int. J. Heat Mass Transfer
,
51
(
19–20
), pp.
4637
4650
.
20.
Lee
,
J.
, and
Mudawar
,
I.
, 2009, “
Critical Heat Flux for Subcooled Flow Boiling in Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
52
(
13–14
), pp.
3341
3352
.
21.
Hong
,
C.
,
Asako
,
Y.
, and
Lee
,
J.-H.
, 2008, “
Poiseuille Number Correlation for High Speed Micro-Flows
,”
J. Phys. D: Appl. Phys.
,
41
, p.
105111
.
22.
Tao
,
W. Q.
,
Guo
,
Z. Y.
, and
Wang
,
B. X.
, 2002, “
Field Synergy Principle for Enhancing Convective Heat Transfer—Its Extension and Numerical Verifications
,”
Int. J. Heat Mass Transfer
,
45
(
18
), pp.
3849
3856
.
You do not currently have access to this content.